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Abstract.The Kosta.ntmultipticity formula isarecipefor computingthe weightmul-
tiplicities ofan irreduciblerepresentatationofacompactsemi-simpleLiegroup. We
describehereageneralizationofKostant ‘sformula: Supposer isaHamiltonian ac-
tion ofa compactLiegroup on a compactsymplecticmanifold. For anappropriate
((quantization)), ~ of r the weightmult,~licatiesof ~ aregivenby aformula
similar toKonsta.nt‘s. Thereis also anasymptoticversionofthisformula whichgives
a recipefor computingtheDuistermaatHeckmanpolynomialsassociatedwith T.

SECTION 1. INTRODUCTION

Let C beatorusand p afinite dimensionalcomplexrepresentationof C. Oneof the

basicquestionsthat canbeaskedabout p is its decompositioninto irreducibles.Since
all irreduciblesof C areonedimensional,andgivenby integralweights, ~, ontheLie
algebraof C, thequestionis how to describethemultiplicity of anygivenweight c~.If

C isthemaximaltorusof acompactsemi-simplegroup K, andp~istherestrictionto
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C of anirreduciblerepresentationof K with maximal weight )~,thenthe answerto
this questionis given by the celebratedKostantmultiplicity formula [K] which says

that themultiplicity m( a,p~)is givenby

(1.1) m(a, p~)= ~(_l)wN(w~ + a) — (a÷6)).

In this expression6 is onehalfthesumof thepositivemotsand thesumrangesover
all w in the Weyl group. The function N is theKostantpartition function: N( v) is
thenumberof solutionsin non-negativeintegers(n

1,... , n~)of theequation

(1.2) U = Thai + ... +

wherethe a5 are the positiveroots. Although (1.1) is an explicit formula, it is ex-

tremelydifficult to evaluate,sinceall partitionfunctions,includingtheKostantpartition
function,arenotoriouslydiffucult to evaluate.Furthermore,therearesomemiraculous

cancellationswhich occurin theKostantmultiplicity formula. Forexample,it is known
that the set of all a forwhich m(a, p~)~ 0 is theconvexhull of the points {w )~}
as w rangesoverthe Weyl group. In particular, m( a, PA) = 0 if a doesnot lie in
this convexhull, a factthat is notat all obviousfrom theright hand sideof (Li). The
Kostantmultiplicity formula canbederivedfrom theWeyl characterformula, cf. [J].
A modemdiscussionof this whole circle of ideasfrom thealgebraicpointof view can

be found in thepapers[B-G-G]. The Weyl characterformula canbe derivedgeomet-
rically from a combinationof the Bott-Borel-Weil theoremand the Atiyah-Bott fixed

theorem,cf. [A-B]. In themoregeneralsettingof theAtiyah-Boutheoremwearegiven
a holomorphicaction of C on aholomorphicline bundle L overa compactKaehler
manifold M with isolatedfixed points. If a ~ in the Lie algebraof C is suchthat

exp(~)is regularat all the fixed points,then theAtiyah-Bott theoremexpressesthe
Lefschet.znumberof exp(~)in termsof a sumoverthefixed points, p, of anexpres-
sioninvolving exp(~)and p. Theregularityconditionmeansthefollowing: Let p be

afixed pointof C. Thenthereis a linearactionof C on the tangentspaceT9 andthis
actionwill havecertainweights,~ Noneof thesecanbe thezeroweight, for a zero

weight would imply a (real)two dimensionalsubspaceof T~consistingof ~ointsleft
fixed by all of G andhence(by the exponentialmap relativeto theKaehlermetricor

any C invariantRiemannmetric)a two dimensionalmanifold of fixed pointspassing
through p, contradictingthe assumptionof isolatedfixed points. Thentheregularity

conditionis

exp i (a1~,~)~ I

or

(1.3) ~ e)~2irZ for all pand j.
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Condition(1.3) clearly involvesavoiding a countablenumberof hyperplanes.Let CI)

M —, be themomentmap associatedto the actionof C on M, whereg~is the
dualspaceof theLie algebra,9, of C. Thenthe Atiyah-Bott formulaassertsthat the
Lefshetznumber

L(exp~)= expi(’I)(p),~)
~l4~ NP fl(l —expi(akP, ~))

k=l

Noticethat condition(1.3) guaranteesthat thedenominatorsof thesummandsin (1.4)

do notvanish. A fixed point q is calleda vertex if thereexistsa ~E g suchthat

(1.5) (ajq, ~)> 0 for all j.

The convexitytheorem[A] and [0-SI] (seealso [G-S3])assertsthat the imageof the

momentmapis the convexhull of theset {cI)(p)} as p rangesoverall the vertices.
(Theremainingfixedpointsif anywill becalledtheinteriorfixed points.It isa property

of actionscomingfrom coadjointorbitswhen C is themaximaltorusthat thereareno
interior fixed points.) Supposewe fix a vertex, q, and then choosea ~ so that (1.5)

and (1.3) hold. This choiceof ~ will amountto the analogue,in the generalcase,of
thechoiceof a positiveWeyl chamberimplicit in the Kostantmultiplicity formula. In

particular,ateveryother fixedpoint p wehave

(1.6) ~ ~)~‘0.

Let

(1.7) = sign((a~~,c)), a~=

so thatnow for all p and j wehave

(1.8) (a7~,~)> 0.

We will now write downa generalizationof Kostant’smultiplicity formula. We will

deriveit fromtheAtiyah- Bott formulain section4. Define N~,the<<partition function

at p�.by taking N~(v) to bethe numberof solutionsin integersof the equation

(1.9) v=Tha~’P+...+nda~’P.

Let

(1.10) (_l)P=fJe~,,
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(1.11) 6~, ~

and

(1.12)

Let £(a,L) denotetheLeftschetznumberof a, that is the alternatingsumof the

multiplicity of a in thecohomologyof theDoulbeaultcomplexassociatedto L. Then
ourgeneralizationof theKostantmultiplicity formulais

(1.13)

(Notice that the quantitiesN~(v),(1.7), (1.10) and (1.12) and henceformula(1.13)

all dependon the choiceof q. Noticealso that thesumin (1.13)extendsoverall fixed
points,notjustvertices.)As wehaveindicated,theevaluationof thepartitionfunctionis
a difficult business,andhenceit isusefulto havean<<asymptotic>>approximationto the
multiplicity formulas(1.1) and(1.13). Letusexplainwhatwemeanby <<asymptotic>>in

thecontextof theKostantmultiplicity formula(1.1). Wecanthinkof themultiplicity asa
measure~ on g~,wherethemeasurep~) isthesumovera of m(a, p~)times
thedeltafunctionat a. So p()~),is a discretemeasuresupportedat<<latticepoints>>in

theconvexhull of {w)~}.Supposewereplace )~by k).. where k issomelargeinteger.
As is well known,therepresentationPkA is thehighestweightcomponentof therepre-

sentationonthe k — th tensorpower, V®Ic, where V is theunderlyingvectorspace
of the representationPA• Its multiplicity measure,~( k)~)will be a discretemeasure

supportedon theconvexhull of {kw)~}.Let A~: g~.—÷ g~denotemultiplication by
thescalarc, sothat

A(i,k) [convex hull of {kw)~}]= convexhull of {w )~}.

So thepushforward measure,A(l/k).p(k)~),is a discretemeasuresupportedon the
<<(1/k) latticepoints>>in the convexhull of {w)~}.It is known [G-S2]that

(1.14) lim A(l/k).p(k)~) U
0,

k—.oo

where

(1.15) v0 = CI~(Liouville meas.on M), I) : M —* g* the momentmap,

andwhere M isthecoadjointorbitof K passingthrough )~.So u0 is our<<asymptotic

approximation>>for theKostantmultiplicity measure.Now the Duistennaat-Heckman
theorem[D-H] saysthat for any Hamiltonian C action, u0 is absolutelycontinu-
ouswith respectto Lebesguemeasureon g~and its Radon-Nikodymderivativeis a
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piecewisepolynomialfunction. More precisely,it saysthefollowing: Let A (I) (M)
betheconvexpolytopewhich is the imageof themomentmap.Then A is a unionof
subpolytopes

(1.16) A=A1u...A~u...

suchthatthe interiorsof the A, consistof theregularvaluesof CI) and

(1.17) U0 = x (Lebesguemeasure) on A1,

wherethe f1 arepolynomials,which we shallcall the Duistermaat-Heckmanpolyno-
mials (or D — H polynomials for short). So the problem of the asymptoticsof the
Kostantmultiplicity formula(andits generalization)consistsof evaluatingthe D — H

polynomials. Onesuchschemeis dueto Heckman[H] for the caseof coadjointorbits
andmotivatesmuchof this paper:In the Kostantmultiplicity formula(1.1) replacethe

Kostantmultiplicity function N by (a suitableconstanttimes)the volumeof thepoly-
tope

(1.18) o=xlal+...
4-xdad, Xi �0,...X~i �O.

To understandwhy suchan expressionshould be relevant to the pushforward of Li-

ouville measureunderthe momentmap,let us considerthe situationneara vertex, p.
By the equivariantDarbouxtheorem(seefor example[G-S3])the actionof C nearp

(ornearany fixed point for that matter)is equivalentto the linearactionof C nearthe
origin in thetangentspace,T~.Forlinearactions,themomentmapis essentiallygiven

by a projection(weshall reviewthis factin section2) andthe D — H polynomialcan
be evaluatedby elementarygeometryto havethe form of a constanttimesthevolume

of a polytopesuchas (1.18). Indeed,let R~denotethe<<positived -tant>> in R” con-
sisting of pointswith all coordinatespositive, and let ds be themeasureon Rd which
is LebesguemeasureonR~and vanishesoutsideR~.Let

—* 9*

bethemapdefinedby

(1.19) L~(.s
1,... ,~d) = ~(i-) + 81a1~+ ... + &dad,~.

Then if p is avertex,

(1.20) v0 L~.ds near CI3(p),
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and theright hand sideof (1.20) is easily seento havetheform of a polynomial times
Lebesguemeasure, where thepolynomial is givenby a constanttimesthevolume of a
regionsuchas(1.18).Thiswill beexplainedinmoredetail insections2 and3. Nowsup-

posethatwe fix somevertex, q, andsome ~ E g satisfying(1.5). Letus<<renormalize>>

themapsL~at all otherfixed pointsby defining

(1.21) L’(al,sd) = CI)(p) + s
1a~~+...+

and set

(1.22) v~=L~ds.

Thenourgeneralizationof Heckman’sformula,to be provedin section3 is

(1.23) U0 =

Notice that onceagainsomemarvelouscancellationsoccurin (1.23)Forexample, u0

vanishesoutside A and has the muchsimpler form (1.20)on any region, A,, abutting
the image, tI) (p), of a vertex. Soinsteadof usingthe closed formula(1.23), a more
effectivewayof computingthe D — H polynomial inmanycasesis algorithmic: start
with theknownform of f1 in somesubpolytopeA, and seehow f~changeswhenwe

crossa wall and movefrom A1 to an adjoiningsubpolytope.Weshallprovideformulas

for thejumpsacrosswalls in section5.

SECTION2 COMPUTING THE D — H POLYNOMIALS: THE LINEAR CASE

In this sectionwe show how to computethe D — H polynomials f1 on regions,

A1, adjacentto theexterior verticesof A. For suchregions theactionof C canbe
assumedto be a linear action, by the equivariantDarbouxtheorem,cf [G-S3]; so we
will startby investigatingin detail the linearcase.Forsimplicity let C be thestandard

n-dimensionaltorus,i.e.

C= R7Z”

Let V be a symplecticvectorspace,and p a representation of C on V. Onecan
decomposeV into asumof invariant subspaces corresponding to the weights thatoccur
in p:

(2.1) V EVc~~,ajE(Z~~)*
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We will assumethat zero is not a weight of p, andhencethateach V” is a two-

dimensionalsymplecticsubspaceof V (i.e. a one-dimensionalcomplexsubspace.Let
ZN bea systemof complexcoordinateson V compatiblewith thedecomposi-

tiOn, (2.1). Thenthemomentmap associatedwith p isthemap.

(2.2) : V —* (R?z)*,CI)(zi,...,ZN) = k11 a1 + ... + zNIaN

and theimageis theconvexconicpolytope

(2.3) A = {s1a1+ ~.+ SNaN,sI,...,SN � O}.

The following is immediate:

LEMMA 2.1. The following are equivalent: ‘LI) is proper ~. A isproperlycontainedin

a half-space,i.e. thereexistsa ~ E R” suchthat (a1, ~) > 0 for all i. a

Lets assumefrom now on that this is the case.Thenthe push-forwardof the sym-
plecticmeasureon V with respectto I), i.e. themeasure

(2.4) v= v0 = ~ ((i)N Ad11 A...AdzNAdlN)~

is well-defined. We will showthat one cancomputeit by elementarymethods.In fact

wewill givebelowthreeequivalentdescriptionsof it, eachonebeingusefulfor certain
purposes. To beginwith supposeN = I - Set a = a1. Then A is the singleray,

{ta,t > 0). Let ~ bethe map of the half-line, 0 < t < co, into (Rn)* sendingt
to ta.

LEMMA 2.2. u0 is thepush-forwardwith respectto ~, of theLebesguemeasure,dt.

Proof Wewantto show

(2.5) * dzAdz = (t~)~dt

TheLHS of (2.5),evaluatedon a smooth,compactlysupportedfunction, f, is

I *~)sf(Zl)t~t~1Z = ff(IZI2a)~i’\~~Z

Thesecondexpressioncanbewritten in polarcoordinates,z = re’°,as

2 f f(r
2a)rdr= ff(ta)dt
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andtheexpressionontheright is the RHS of (2.5) evaluatedon f. Q.E.D. •

Now considerthegeneralcase.By (2.1) the representation,p, is the productof the
representationsof C on the onedimensionalsubspaces,V~,so themeasure,v0, is
theconvolutionof themeasureassociatedwith theseonedimensionalrepresentations:

(2.6) 00 = (~)*dt * ... * (~)~dt

As we’ll seebelow, it is not difficult to computetheRHS of (2.6) by inductionon

N.
Anotheruseful formula for themeasure,u~,is the following: Consider I) as the

compositionof themapping:

V —~RN, (z1,... ,ZN) —~ (1z11
2,... ,IzNI2)

andthelinearmapping

L:R~~~_*(R?2)*,(~i,~••,~N) laI+...H-SNaN

LEMMA2.3. Let~bethecharacterisricfunctionofthe.~<N-tant*~ � 0,... ‘8N � 0},

1nRN. Then

/ 1 \N
(2.7) q’~(—) dzAdl=xdsIA...AdSN

in J

Proof This is just formula (2.6) with N = n and a1,... , a~, the standard basis vectors

in RN. Q.E.D.

Thusweobtainfor 00 theformula

(2.8) U~= L~(xdsi A... AdSN)

FromtheRHS of this formulaoneimmediatelydeduces:

PROPOSITION2.4. If the a, ‘s span (R”) then V~ is absolutely continuous with
respectto Lebesguemeasure,i.e. it canbewritten in the form

(2.9) u0=f(x)dx

f(x) beingalocally £‘ function.
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Proof If the a,‘s span,onecanmakea linearchangeof coordinatesin RN so that L
becomesthemapping: x, = a,, i = 1,... , n and in thesecoordinatestheproposition

isjusta consequenceof Fubini’s theorem.Q.E.D. a

Thevalueof f atanypointin (R”) isproportionaltothevolumeof theintersection

of Lr~(a) with the N-tant: i.e. 1(a) isequaltoa constant(notdependingon a)
timesthevolumeof theset

(2.10) a= Esiai + ...l-SNaN, ~ >0,

Noticethatif a and the a’s arelarge,and a isanintegerlatticepoint, thisvolume
is, to a first approximation,proportionalto thenumberof integerlatticepointslying in

this set, i.e. 1(a) ~ ‘yN(a), where N is the partition functionassociatedwith the
weights,a1,... ,aN.

The third descriptionof V~ is as the fundamentalsolutionof a partialdifferential

equation.Supposea,= (a0, . . . , a,,). Let

D, = a,1ô/5z1 + . . . +

and let 5~be theDirac deltafunction with supportat the origin in (R”) * We will

showthat

(2.11) D~. . . D,,u0 =

Proof Supposefirst that N = 1 and a1 = a. Evaluating theRHS on a smooth,

compactlysupportedfunction, f, weget

(Da00,f) = —(v0,Dj) =

= —((~)~dt,D~f)

=L~0j~’t,~.,ant~t

=1
0 dt

which isjust 6~evaluatedon f. To prove(2.11) in generalwego backto theformula
(2.6). This givesus for theright handsideof (2.11)theexpression

(D~,(~,)~dt)* ... * (D,:*N(~aN)*dt).
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As we’vejustseen,eachfactor in thisconvolutionproductis thedeltafunctionsup-

portedatthe origin; hencesois theproductitself. Q.E.D. .

By assumptionthecone(2.2) isproperlycontainedin somehalf-space

(HeY = {x ~ (Ray, (e,x) >0).

Hencethe measure,00, is properly supportedin this half-space. We claim that

this propertyand theequation,(2.11),completelycharacterizeV~. Indeed,supposewe
weregiventwo distributionsboth of which satisfied(2.11) and weresupportedin this
half-space.Thentheir difference, u, would satisfy

Da,...Dc,NV=O

andwould also besupportedin this half-space.Let

= Da . . . D~,U

Then Dai v’ = 0, and so the supportconditionclearly implies that u’ = 0. Sim-

ilarly Dat . . . D~,u= 0 for all i, and,in particular, v itself hasto be equal to zero.
Notice,by the way, that if wedifferentiateV~ by justoneof the Dat’s, says Dai we
get, by thesameargumentas above,

(2.12) D,, V~ = ~ )~dt * * ~~‘N ),d t.

We will makeuseof this identity below.
Next let us investigatesomepropertiesof themeasureu~.Foreverysubset,S, of

thesetofweights,{a1,... ,aN}, let

(V0)
5= fi (Va~~0)

aES

It is easyto seethat atevery point, p, of (V
0)

5, thesubgroupof C which stabilizes
p is independentof p andis the group

(2.13) {x E R~/Z”,exp2ini(a,x) = l,a ES).

Sincea pointof V is a critical pointof CI~ if its stabilizergroup is notdiscrete,we
conclude;

LEMMA 2.5. Thesetofcritical pointsof cI) is adisjoint unionof (V
0)S ‘s-, moreover,

a (V0)
5is critical if the a’s inS arenotasetofspanningvectorsof(Rn)*. •
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Let WS bethefollowing subsetof (R$2)*;

W5 = {>s~,a,aE S,Sa� 0}.

Fromthelemmaandthedefinitionof CI) , weget:

PROPOsm0N2.6. Thecritical valuesof I) aretheunionofthe WS ‘s for which S is
notaspanningsetof (Rl~)*.

Let A
0 bethecomplementin A of theset of critical valuesof CI), andlet A,, i =

1,... , r, be theconnectedcomponentsof A. By proposition2.6, the A, ‘s are open
conic polytopes,and the sets, WS are the walls of thesepolytopes. Now lets write

04, asthe productof Lebesguemeasurewith a locally £1 summablefunction, f, as
in (2.9). Sinceeach A, is containedin the set of regularvaluesof CI, the restriction

of f to A. is a smoothfunction. Notice alsothat, by (2.8), the measure,U~, is the
push-forwardby alinearmapof a measureon ~ whichis homogeneousofdegreeN
withrespectthegroupof homothetiesof ~ Thus u~is alsohomogeneousof degree

N, andso,by (2.8), f is homogeneousof degreeN — n, i.e.

f(tz)=t’~~f(x).

Wewill nowprovetheDuistermaat-Heckmantheoremin this linearsetting:

THEOREM2.7. Therestrictionoff to eachA, isa hornogeneouspolynomialofdegree

N — n.

Proof Choosecoordinatesin (RN)* so that the A is properlycontainedin the half-

space,~ � 0, and a1 is the unit vectorpointing in thedirectionof thepositive x1
axis. By (2.12)

(2.14) a/az1v4,= (~.~2)~dt* ... * (taN)*h1t

Assumeby inductionthattheRHS is a sumof theform

~

wherethe g,’s arepolynomialsandthe x,’~arethecharacteristicfunctionsof the A’s.
Let p beapoint in A0 andlet x1, ... , z,, beits coordinates.By integrating(2.14),we

get

(2.15) f(z~,...,x,,) = ~ x2,...,z,,)ds
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Since p isin A0, the ray, p+ ta~,—oo< t <0, intersectsthe n—I dimensional

walls of the A, ‘s transversallyanddoesn’tintersectanyof thelowerdimensionalwalls.
Thus,sinceeachA. isconvex,oneof the threefollowing alternativeshasto betrue: 1.
Theraydoesn’tintersecttheboundaryof A. at all.

2. It intersectstheboundaryof A, in justonepoint, (in which casep is aninterior
pointof A,.)

3. It intersectstheboundaryof A. in two points.
Moreover,in thelasttwo cases,thepointsof intersectiondependlinearly on p: i.e.

in thesecondcase,thepointof intersection,

p’= (x’,x2,...,x,,)

satisfiesalinearequation

andin the third casethepointsof intersection,

p’ (x’,.x2,...,x,,)

and

= (x”, x2,. . . , x,,)

satisfylinearequations

and

= b1x1 + ... + b,,x,,.

In the first case,the ith term makesno contributionat all to the sum(2.15). In the

secondcase,it makesthe contribution

I,
and,in thethird case,thecontribution

f ~ ~•

It is clear in eithercase that this expressionis a polynomial function of the r~’s.

Q.E.D.
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REMARK. This proofcanbe convertedinto a fairly efficient algorithmfor computing
f.

Next we will derivea formula for the <<jumps>> in f acrosswalls separatingtwo
adjacentA,’s. (Wewill takepains,by theway, to writethisformulaas<<intrinsically>>as

possible,because,aswewill seein section5,theversionof thisformulathatwewill give
belowis truein themanifoldsettingaswell.) Let W = W5 be an n— 1 dimensional
wall separatingtheregions,A~andA_, andlet C8 bethesubgroupof C definedby

thesetof equations(2.13). Sincethe cv’s belongingto S spanan n— 1 dimensional
subspaceof (Rn), this groupin onedimensional.Let ~ beanon-zeroelementin its
Lie algebra.Its clearthat (cv, ~)= 0 for all a E S, and that theseequationsdetermine
~ up to a constantmultiple. Converselywe canassumethat S consistsexactlyof those

weights for which (a,~)= 0. We will fix the orientationof ~ by requiring that it be
theoutwardnormal to the region, A_. With the convention,~ is determinedup to a

positiveconstantmultiple.
Let VS be thesubspaceof V spannedby the Va’s in the sum(2.1) with a E S.

By (2.13), Vs isthefixed point setofthegroup,C8 : so,by restricting p to Vs, we
geta representationof the quotientgroup, C/Cs, on V8. Its momentmap isjust the
restrictionof CI) to Vs, and maps V’~onto the n— 1 dimensionalwall, Ws. We
will denoteby VS the analogueof the measure,04,, for the actionof C/Cs on VS

andthinkof this measureasliving on Ws. Wewill showbelowthat this measureis all
thedata thatisneededto computethejumpin f across W8.

Justasfor U~ wecanwrite 0S astheproductof a locally C’ function, f~,(defined

on W’~),timestheLebesguemeasureon W5. A slight hitch is that theLebesgue
measureon W8 isonlydefinedup tomultiplicationby apositiveconstant.However,the
choiceof ~ gives us awayof fixing this constanLLet (c,. . . , c,,) bethe coordinates

of ~, andlet zi~be an n— I form on (Rn)* of the form

vs=~a~)’dx
1A...A~A...Adx,,

the a,‘s beingconstantswhich satisfy

(2.16) >a~E,=1.

Thenthe restrictionof u,~to WS doesn’tdependon the choicesof the a,‘s and

definesbothanorientationand ameasureon W
5. Thismeasure,which we will continue

to denoteby i.’5, will beby definition,ourLebesguemeasureon Wa’. In termsof it we

canwrite

(2.17) 0s= f
5v5.
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Notice, by theway, that Is is itself, (by theorem2.7 appliedto theactionof C/Cs

on Vs), a piecewisepolynomialfunction.Also noticethat if wemultiply ~ by apos-
itive number, A, then by (2.16) i.’

5 getsmultiplied by a factorof 1/A and hencefs
getsmultiplied by a factorof A.

Beforestatingourmain resultwe needtwo final piecesof notation.‘Via theidentifi-

cation, R~‘~‘ (R?~)*,wecanthinkof ~ asalinearfunctionalon(R~)’.It will cause
untoldconfusionbelowif weusethesamenotationfor ~ and for this linearfunctional,
so we will denotethis linearfunctional by Le. A secondbit of notationthat we will

needis thefollowing. In thedecomposition,(2.1), wecanassumethat the a,’s are so
labelledthat thefirst m cv,’s arenot in S andtheremaining a,’s are.

THEOREM2.8. Supposef isequalto thepolynomial,f~,on A~and f_ on A_. Then

(2.18) 1+ — I- = ((m — 1)! fl(cviie)1) ~sL~’ + ~

g beinga polynomial which vanishesto order m on W
5.

Proof (By inductionon m.) Assumeby inductionthat along Ws thedistribution

(~a

2)s(

1t*~*(CaN)*Clt

hasa singularityof theform

I

((m_2)! ) f~L~

By (2.12) thisdistribution is thederivativeof f with respectto Da. However,
= (cv,,~’ D L~1

C m—l ~‘ C

so f itself hasto haveasingularityof the form, (2.18),along W5. Q.E.D. . •

REMARK. Noticethatthenumberof weightsin S is at least in— I; so m is lessthanor
equalto N — n+ 1. Theformula,(2.18), isparticularlysimplewhenthe thisinequality

is anequality, i.e. when m = N — n+ 1. Then, since f÷ and f_ are homogeneous
polynomialsof degreeN — n,g hastobezeroand f

5 hastobeaconstant.Thisconstant
is easyto compute:Let

am+1 = (a11,... ,a1,,)

(2.19)

aN = (a,,~,,,. .. ,a,,1,,)
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andlet AC bethematrix having thevectors(2.19)asits first n— I rowsand (a,,...,

a~)as its last row. (the a’s beingas in (2.17).)Then

(2.20) f,~= c
5 = det

and(2.18)reducesto

N-n÷1

(2.18) 1+ — = (N~n! , (ao~Y1) (Le)’~

i.e. thejumpacrossWs is a constantmultiple of the monomial, (L~Y””.

EXAMPLE. N = 4,n= 2,a1, a2, a3, a4 distinct.OnegetsthefigurebelowforA

In all threeregionsof this figurethe D-H polynomialsare homogeneousquadratic

polynomials.In theexteriorregionsthesepolynomialsaremonomialswhoselevel sets

are straightlinesparallelto theexteriorsides. If onegoesinto the interiorregionfrom
thesideparallelto a2, thejump termwhich onehasto addis a monomialwhoselevel
setsarestraightlines parallelto a2. If onegoesinto the interior regionfrom the side
parallelto a3, thejumpterm which onehasto add is a monomialwhoselevel setsare

straightlinesparallelto a3. (Exercise:Determinethecoefficientsof thesejump terms
usingthefactthatonehasto getthesameanswer,whetheronegoesinto the regionfrom
theleft or theright.) Oneimportantconsequenceof (2.18)is the following:

THEOREM 2.9. f is continuousnear W
5 if m> 1, and is k timesdifferentiaible

nearW5ifm>k+l. a
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SECTION 3. COMPUTING THE D — H POLYNOMIALS: THE .KHECKMAN.>
FORMULA

Letsnowcomebackto thesituationwewereconsideringin section1: C an n-torus,

M a compactsymplecticmanifold and

C —~ Symplectico (M)

aHamiltonianactionof C on M. As in sectionone,we will denoteby

CI) : M ~

themomentmap associatedwith ~ and by v
0 the push-forward with respect to (1? of

thecanonicalsymplecticmeasureon M. Let f betheDuistermaat-Heckmanfunction,
i.e. theRadon-Nikodymderivativeof 00 with respecttoLebesguemeasureon g*~The

goalof this sectionwill be to derive a formulafor f similar to the Kostant-Heckman

formula which wediscussedin thefirst paragraphof section 1. Unfortunately,this for-
mulawill only makesensewhenthefixed pointsetof isafinite set;sowewill henceforth
assumethatthis is thecase.Beforestatingthis formulain its full generality,wewill first

describewhata <<piece>> of this formulalooks like. As we pointed out in section one,
thesupport, A, of v,~, i~the convexhull of the imageof the fixed point set, M0, of

C; so,in particular,A is a finite polytope,andits verticesareimagesof pointsin M0.
However, theremaybe points in MG which don’t correspondto verticesof A : it is

possiblefor the imageof some fixed point to becontainedin the interior of theconvex

hull oftheremainingfixed points.In fact,asmentionedin the introduction,a necessary
and sufficientconditionfor a fixed point, p, to correspondto a vertexof A is thefol-

lowing: Let be the linearisotropyrepresentationof C on thetangentspaceto M

at p. By the equivariantDarbouxtheoremthereexistsa C invariantneighbourhood,
U0, of theorigin in TM~,and a symplectomorphism:

(3.1) h : (U,p) —f ([J~,0)

intertwining #c and ~. (For a proofof this <<C-equivariantDarboux theorem>>see

[G-S3].)Now let

(3.2) ~ i= l,,..,N,

bethe weightsof the representationof C on TM~,andlet z1,... ,zN be a systemof
complexcoordinatesin TM~compatiblewith the decompositionof TM~into weight

spaces.By (3.1) the momentmap, CI, restrictedto U, is equalto I)0 o h +

where

(3.3) ~I)0(z,,... ,ZN) = ~ a~~Iz~I
2.

(Comparewith (2.2).)Thus the imageof U in g isthe intersectionof a neighbor-
hoodof CI(p) with thecone:
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(3.4) {cb(p) + ~ s1 ~ 0,... ‘

8N � 0.}

and so, CI) (p) will be a vertexof A, at leastlocally, if (3.4)is apropercone, i.e. if

thereexistsa ~ E g suchthat

(3.5) (a~,,e)> 0

for all i. One can, in fact, provea good dealmore. Using someglobal propertiesof

themomentmapping,onecanshowthat if (I) (U) is containedin thecone(3.4), then

I) ( M) is containedin this cone;soif (3.5) holds, CI (p) is an honest-to-godvertexof
A, not justa vertexlocally, (See[A] or [05, ].)

Letsnow assumethat a ~ satisfying(3.5) exists.Then, by lemma2.2, CI) : U —~

is proper,so themeasure,O~, is identicalin a neighborhoodof CI) (p) to themeasure
which westudiedin theprevioussection.In particular:

THEOREM3.1. In a neighborhoodof (I) (p), theDuistennaat-Heckmanfunction, f( ,~i),

is equalto a fixedconstanttimesf~(~ + (I) (p)) where

(3.6) .f~(~)= volume {/.L = s,a~,,S
1 ~ °‘~N � 0.}

Notice, by the way, that since f is a polynomialon eachof thesubregions,A,, of
A, onecantakethe neighborhoodon which f( ~i) is proportionalto f~(j.i + I) (p))
to be a lot largerthan ~I)(U) : onecantakeit to be the union of all the A,’s whose

closurescontain CI)(p). Forexample,Let M be a six dimensionalcoadjointorbit of
SU( 3) and C themaximaltorusof SU(3). The imageof the momentmap is thena
hexagon,andin general,this hexagonwill be subdividedinto sevenregionsasdepicted

below:
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(Therewill be a oneparameterfamily of six dimensionalorbits (correspondingto

multiples of the adjoint representation)wherethe hexagonwill be a regularhexagon

and the middleregionwill havedegeneratedto a point, leavingsix subregionsinstead
of seven.)In thegenericcaseeachvertexwill give rise to two subregions,a triangular
and a rhomboidalsubregionon which f is proportionalto (3.6).

The moralof thediscussionaboveis thatone cancompletelydescribethemeasure,

v4,, in thevicinity oftheverticesof A usingnothingmorethantherelativelyelementary

resultsoftheprevioussectionandthe G-equivariantDarbouxtheorem.However,to get
infbrmation aboutU~in regions,A,, notcontainingverticesin their closures,we will

needoneof thedeeperresultsof the Duistermaat-Heckmantheory: theexactstationary
phaseformula. Wewill give a carefuldescriptionof this formulabelow; butbeforewe
do so, letsfirst recall whatthe lemmaof stationaryphasein its usual form is about:Let

M beacompactin dimensionalmanifold, ~i a smooth,non-vanishingmeasureon M,
and ~ : M —i JR, a smoothfunctionhavingonly a finite numberof critical points, all
of them non-degenerate.Then the lemmaof stationaryphaseis a recipefor evaluating

theoscillatory integral

fe1~~’bd~p

iti termsofdataatthecriticalpoints.Moreexplicitly, it saysthat for A large,this integral

is equalto

(3.7) )~t2~’2~ exp ~/j(p)

modulo anerrorterm of order, O(AW
2’), thesum takenoverthe fixed points. The

c~,’sand .sgn(p)‘s in this sum are definedas follows: The Hessianof ‘P at p is a

non-degeneratequadraticform on thetangentspaceto M at p; so onecanchoosea

basis, v
1,... , v,,, for the tangentspacesuchthatwith respectto this basis

D
2~(v~,v

1) =

where �, = ±1.The numberof +1 ‘s is sgn(p), (the signatureof D
2 ~), and c~

is thequantity, p( v
1, ... , v,~).In particular, let M be the symplecticmanifold that

we’vebeenconsidering, u the Canonicalsymplecticmeasure,and ~ acomponentof

themomentmapping:i.e. let ~ beanelementofg, andlet~ = = (CI,~). Itiseasy

to seethat ~ hasnondegeneratecritical points if and only if the conditions(1.6) are
satisfiedfor all fixed points, p, of C; and,if theseconditionsaresatisfied,the critical

pointsof ~ coincidewith thesefixed points, in fact, by (3.3) theHessianof ~ at p is

(3.8)
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andits clearthatthisquadraticform isnon-degenerateif andonly if theconditions,(3.5),
are satisfied.From(3.3) onecomputesfor thecontributionof p to (3.7)

c~e~’
12~’agn(p) = (~)N(J~Ja~

1(~))—‘

whereN = dim M/2. Thusthe moduloan errortermstationaryphaseformulafor ~I
reducesto

(3.9) fe’
4,’~d~= (—iA)~~’~exp i(CI)(p) ,

for all ~ whichsatisfy (1.6). Theexactstationaryphaseformulaof Duistermaat-Heck-
man says that the errorterm is identicallyzero. In otherwords, setting A = I, the
identity

(3.10) f e4,’~d~= (~)N ~exp i(CI)(p),~)/([J(cv~,(~))

holdson thenose.Fortheproofwereferto [D-H] or [B-V] or [G-S3].Forthemoment

we will just say a few words abouthow one can<~ahnost>>prove(3.10)justusingthe

G-equivariantform of theDarbouxtheorem.Namely,by theDarbouxtheorem,onecan
write the integrandon the left handsideas

exp(iA~a~~(OIz,I2)(l/iri)’~’dzAd~,

in theneighborhoodof the fixed point. Thus,by a partition of unity argument,onecan
write (3.9) asa sumof the integrals

(3.11) fexp(iA>apj(~)Izjl2) (l/ini)N dzAd~,

(onesuchintegral foreachfixed point), and an integralof the form

fpexp(iAq~)d~

wherep isidenticallyzeroin theneighborhoodof thecriticalset.ByelementaryFourier
analysis,thesecondexpressionis of order, O(A°°)in A for A large;and,by elemen-

tarycalculations,onecanshowthatthesumof the terms,(3.11),is equalto thefirst term
on theright handsidein (3.9). Thusit takesno effort atall to improvethe O(A~I2’)
in (3.9)to an O( A°°).Thehardpartof theproofof (3.10)is gettingrid of thisinnocu-

ouslooking O(A~°.)
We will now describethe<<Heckman>>formula,(1.23),alludedto atthebeginningof

this section.Considerthesubsetof g consistingof the unionof thehyperplanes

~ =0.
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Thecomponentof this set hasseveralconnectedcomponents,and wewill fix, once

and for all, oneof thesecomponentsand call it ourpositive Weyl chamber. (Formula

(1.23) which we derivebelow will actuallybe a collection of formulas,one for each
choiceof a positiveWcyl chamber.)

As describedin the introduction,wedefine,for eachfixed point, p, a renormalized

setof weightsby equation(1.7) anddefinethe u~by (1.21)and(1.22),andthefunction
(—1)” by (1.10).

Fromtheprevioussectionweknownthat v~,is aconstantmultiple of f~dz,f~being

the <<Heckmanpartitionfunction>>

+ (I)(p)) = volume {t~= ~ s,a~’,,s~~ 0, ...
8N � 0 }

THEOREM. The Duistermaat-Heckmanmeasure,U
0, is equalto thealternatingsum

overthe fixedpointsetofC:

=

Proof Forthemomentfix a point, p, in the fixed point set,andset

- a~=~ I,...,N

and

v=CI)(p).

Considerthefunction

ei(”E)

(3.12) = fl(a,,~)

Let 0 betheopensubsetof g obtainedby deletingthehyperplanes,(a,,~)= 0. Then
g is a well-definedrational functionon 0, and thereare many ways to extendit to a

<<generalized>>functionon all of g.

pRoposmoN3.3. Let ~ be a vectorin the positive Weyl chamber. Then there is one
andjustonetempereddistribution, h, on g with thepropertiesthat h isequalto g on

0 andthat theFouriertransformof h isproperlysupportedin thehalf-space,

(3.13) {~~g*,(a,c~)�c}

for someconstant,c.
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Proof Without lossof generalitywe canassumethat v = 0, (in which casewe can

taketheconstant,c, to bezero). The existenceof onesuchdistributionis easy. Let v
bethemeasuredefinedby (2.4). Weshowedthat this measuresatisfiesthedifferential
equation

D~...Dau=6o;

sotheFouriertransformof this measuresatisfies

1,

whichreducesto (3.12)on 0. As for theuniqueness,supposetherearetwo distributions
with thepropertiesabove.Let k betheirdifference.Then k is supportedon theunion

of the hyperplanes,(a,,~) = 0. Moreover,sinceit is tempered,it lies in somefixed
Sobolev space,andhence(regardedas a linear functional on the Schwartzspace)is
continuousin the C~topology for a sufficiently large r. Therefore,its productby a

sufficiently largepowerof fJ(a,,~)has to vanish, and its Fourier transformhasto

satisfy thedifferential equation,

(3.14) (D~. . . D,~,)rf= 0,

for r large. However,since f is supportedon ahalf-spaceof the form

(3.15) {p E g*(~~~)� c},

with ~ in the positiveWeyl chamber,this implies that f is identicallyzero. (Seethe

discussionin section2 following theproofof (2.11).)Q.E.D. a

To prove(1.23) noticethat, by construction,the Fourier transformon the LHS of
(1.23) is equalto theFourier transformof the RHS on 0. However,by theFourier
inversionformula, theFouriertransformof theseFouriertransformareboth supported

in ahalf-spaceof the form, (3.15). Hencea repetitionof thepreviousargumentshows
thattheyhaveto be identical. Q.E.D.

SECTION 4. IS THERE A <<KOSTANT>> FORMULA CORRESPONDING TO
THE <<HECKMAN>> FORMULA?

We will show in this sectionthat the answerto this questionis yes and is given by
(1.13).Wewill haveto assume,however,that thesymplecticactionof C on M, i.e.

it : C —~Symplectico (M)
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canbe<<quantized>>.Thereis no firm consensusaboutwhatthisterm means;however,

for thedurationof section4, wewill takeinn meanthat the following are true.
a. it canbepm-quantized:Supposethatthe cohomologyclassdefinedby thesym-

plecticform on M belongsto the imageof thecanonicalmapping, t: H2 ( M, Z)
H2(M,JR), i.e. that it is an integral cohomologyclass. Then, by [K], thereexistsa
Hermitianline bundle,L, sitting over M and a connection,V, on L whosecurva-

ture form is WM. Moreover,if M is simply connected,L and V are uniqueup to
isomorphism.Furthermore,(bc. cit.), onegetsa canonicalrepresentationof g on the

spaceof sectionsof L : Foreach~ E g, let e be thevectorfield on M associated
with~,andlet

(4.1) De = VC# + i(CI3,e).

Thenthemap, ~ —‘ D~,is aLie algebrahomomorphism.Following [K] we saythat
it canbepre-quantizedif thereis arepresentationof C on sectionsof L whichis given

infinitesmallyby (4.1).
b. M possessesa positivedefinite C-invariant polarization,i.e. thereexistsa C

invariantKaehlerstructureon M compatiblewith its symplecticstructure. In this case
L aquiresnaturally the s~tructureof a holomorphicline bundle,and the holomorphic

structureon L is compatiblewith theactionof C definedby (4.1).
Givena. and b. we will, againfollowing [K], definethe quantizationof it to be

thenaturalrepresentation,p, of C on the spaceof holomorphicsectionsof L. Our
startingpoint for the<<generalizedKostantformula>> (1.13)below will be a formula for
the<<character>>of p (actuallyan alternatingtrace, i.e. a Leftschetznumber)which is
verysimilar to theexactstationaryphaseformuladescribedin theprevioussection.As

in theprevioussection,wewill assumethatthefixed pointset, M
0, is finite and that for

eachp E M0, the weightsof the isotropyrepresentationof C on the tangentspaceto
M at p aregivenby (3.2). Let ~ be anelementof g satisfying(3.5), andconsiderthe

LefschetznumberL(p(exp ~)). By theAtiyah-Bott fixed point formula, [A-B], this is

equalto thesumover M~of

~ trit~(exp~) : —p L~
~-‘ fl( I — exp~ ~)

it~ being the isotropy representationof C on the fiber, L~.By (4.1) the trace of
ic~(exp~) is equalto expi(CI(p),~);sowe get formula (1.4).

Beforeexploiting this formula, we will pausefor a momentto pointoutsome sim-
ilarities betweenit and (3.10). In both formulas, the sum is over the fixed point set of

C and thenumeratorof the p — th summandin the same.Moreover,for ~ small, the

denominatorof the p — th summandin (1.4) is approximatelyequalto

(4.2) (~)N fi aP,k(~)
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which is identical with thedenominatorof the p — th summandin (3.10).Thuswe’ve

proved

PRoposmoN4.1. For ~ small, the traceof p(expie) is approximatelyequalto

£~(Ej.
This resultexplains,incidentally,why the asymptoticpropertiesof themultiplicity

diagramscanbedescribedby a <<centrallimit theorem>>involving themeasure,00; for,
by rescaling,<<~ small>> in proposition4.1 canbe reinterpretedas <<the a~,‘s large>>.

Letsnow considertheFouriertransformsof the rightandleft handsidesof (1.4). Let
a bea latticepoint in g* and let £(a,L) be theLefschetznumberof a in p. Then
theLHS of(1.4) is thesum

~ £(~,L)expi(j~)

andits Fouriertransformis a finite sumof delta functions:

(4.3) >e(p~,L)6(A—p).

Onthe otherhandto computethe Fouriertransformof theRHS of (1.4), we have
to know how to computethe Fouriertransformsof eachof the individual termson the
RHS.Thesituationhereis similartothesituationweencounteredin theprevioussection
in tryingto computetheRHS of (3.10): thereis someambiguityaboutthedefinitionof

thisFouriertransformsincethe p — th summandin (4.2) is definedonly if

(ark, ~)~2irZ

for all k and p. As describedin section1, we will dealwith this ambiguityby renor-
malizingthe a~,k‘s, i.e. wewill fix for onceand for all a<<positiveWeyl chamber>>and
sochoosea ~ satisfying(1.3) and(1.5) for some q, andmakethedefinition(l.7)-(l .12)

ateachfixedpoint p. After somejuggling wecanwrite the p — th term in thesumof
theright of (1.4) as

,~ expi(~I)(p)+ —

(4.4) (—1) Nu (I _expi(a~k,~))

Nowletsreplaceeachfactorin thedenominatorofthis expressionby thecorrespond-
ing geometricseries

(4.5) ~exp im(a~,i,~)
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andget for (4.4) theformula

(4.6) (—1)’~N~(~i)exp i(~+ cJ?(p)) + —

where N~(~)is thenumberof N-tuples of non-negativeintegers, (k
1,. .. , kN), sat-

isfying theequation

= ~ k,a~,.

We will can N~ the partition function associatedwith the point, p. Considernow

theFouriertransformof (4.6). This is thesum

(4.7) ~ — j.~—

1)(p) — 6~’+&~)

Noticethatboth(4.7) and (4.3) havesupportin a fixed half-space

He = {A E g* (.X,e) � c},

~ lying in thepositiveWeyl chamberand c being a fixed constant. (For (4.7) this is a
consequenceof the factthat N~ is supported in thecone,

5j � ~ ‘8N � o},

andfor (4.3) it ismerelyaconsequenceof thefactthat (4.3)is compactlysupported.)We
will show,as in section3, that this forces(4.3) to be equalon thenoseto the sum over

p E M~of theexpression,(4.7). Indeed,taketheFouriertransformof (4.3) and of the
sum of the (4.7)’s, and let k betheirdifference.Then, by construction,k is supported
ontheunionof thehyperplanes,~ ~)E 2 irZ, andhence

fl(I ~_exp(a~),,~))rk=0

for sufficiently large r. Therefore,the inverseFouriertransformof k satisfiesthedif-
ferenceequation

(4.8) fl(I _J~)rf=0,

J~beingtheoperator,<<translationby ci .<. This, together with the fact f is supported

in H~forces f to be zero,andhenceprovesthat (4.3) and the sum of the (4.7)’s are
equal. (Proof: Argue by inductionon thenumberof factors in the producton the right
in theequation(4.8). Forinstanceif r is equalto oneand thereis justone ci~’,,this

equationsaysthat f(j~) = f(~ + a). Since f is supportedin He and (a,e) ~‘ 0,
this forces f to be zero.) Lets now compare both sides of this equation. Setting u =

+ (I)(p) — (1(p) + + 6~,wecanrewrite (4.7):

(—l)~N~(u — tJ?(p) + O~—8
2)8(X — u).

Thus, summing over p and comparing the coefficients of 8( )~ — u), we getthe

<<Kostant>> formula (1.13).
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SECTION 5. COMPUTING THE D — H POLYNOMIALS: FORMULAS FOR
THE JUMPS

In theexactstationaryphaseformulawhich we describedin section3.3 we hadto
assumethatthefixed point setof C, i.e. M~,wasa finite set.DuistermaatandHeck-

manderivedin [DH, 2] a moregeneralversionof exactstationaryphasewhich makes
no assumptionsatall aboutthefixed point setof C. Unfortunately it is notveryuseful
for thecomputationswearetryingto do here,sinceit involvesknowingquite abit about
thetopologyof thenormalbundleof M0. However,the<<leadingterm>>in theirformula

canbe computedby a standardstationaryphaseargumentand is veryusefulfor com-
putingthe<<jumps>> in the D — H polynomialsacrossthewalls ofthe As’s. It turnsout

thatthesejumpsare given by essentiallythe sameformulasas in the linearcase.Here
arethedetails:

Let A.f and i\ be two adjacenti\’s, let f~and f_ be the D — H polynomials
associatedwith them,and let W be the (n — 1)-dimensionalwall separatingthem,

orientedSO thatthe<<normal vector>>, ~, to W is pointing outof i~ and into i~. We
will showthatthejump, f4 — f_, at W is given by theformula

(5.1) - f = (fi(~~1)fwrnLOl~?

plusanerrortermof order (Le — L0 ) m thequantities,a,,~ Le, etc. beingdefined
moreor less as in thelinearcase. (Comparewith (2.18).) The precisedefinitionsare

asfollows: As we alreadymentioned,~ pointsinto A.~..(Since W sits in g*~wecan
think of ~ asanelementof p or as an elementof TW.) We recall that Le denotes

thelinearfunctionalon g~associatedwith ~, i.e. the linearfunctional

p —~ (p,~).

Theone-parametersubgroupof C generatedby ~ is a circularsubgroup,and we will
denoteit by S

1. To explaintheotherundefinedquantitieson theRHSof (5.1),we must

first say afew wordsabout theactionof S’ on M. To begin with, its fixed point set,
M

51, is asymplecticsubmanifoldof M, and 1 mapsone (ormore)of theconnected

componentsof M51 onto W. (For simplicity, we will assumethatjustonecomponent
is involved and denotethis componentby X.) Thequotientgroup, C/S’, acts in a

Hamiltonian fashionon X, and the momentmap of this action is therestrictionof 1
to X. Thepush-forwardof thecanonicalsymplecticmeasureon X by themomentmap

is a measurewhich liveson W, and the f~ in (5.1) is theRadon-Nikodymderivative
of this measurewith respectto theLebesguemeasureon W. (A smallcomplicationis:
<<how todefineLebesguemeasureon W .>> In principleit is only definedup to thechoice
of a positiveconstant;however,aswe pointedoutin section2, thechoiceof ~ fixesthis

constantin acanonicalway. See(2.16)andthediscussionfollowing it.)
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Westill haveto explainthe <<m>> and the <<a,’s>> in (5.1): Theinteger, m, is as in
(2.18),thecodimensionof X dividedby 2, andthe ci,‘s aretheweightsof the isotropy

representationof S1 onthenormalbundleof X. (Noticethat,becauseX isconnected,
this representationhasthesameweightsateverypoint.)

Proofof(5.1). Let H bean (n—1)-dimensionaltoral subgroupof C with theproperty

that H andS’ intersectin {e}, andlet ~ bethemomentmappingassociatedwith
theactionof H on X. J?H isthecompositionof CL) with thecanonicalprojection:

—,

andthe restrictionof ir to W maps W bijectively onto h~. Let ci be a point on W

whoseimage, ir( ci), is a regularvalueof ~1~H• Associatedto a are two symplectic
manifolds: Onecanreduce M (viewedasan H-space)at ir( ci), and onecanreduce
X (viewed as a C/S1-space)at a. Let us denotethesereducedspacesby Ma and

Xa. Notice thatsincetheaction of S1 commuteswith the actionof H, thereis an
inducedactionof S’ on Ma.

LEMMA5.1. X
0, isthe fixedpointsetfortheactionofS

1 on Ma.
We will leave theproofof this as an easyexercise. Notice that, by definition, the

valueof f~at a is the symplecticvolume of Xa; so,by thelemma,wearereduced

to provin~(3.l)in the specialcase,C = S1 that is, we are reducedto proving the
following: (themanifold, M, in the theoremthat follows beingthe Maabove.)

THEOREM5.2. Let M beacompactsymplecticmanifold.SupposeS’ actson M ma
Hamiltonianfashionwith momentmap, ~: M -~ R. Let f( t) d t bethepush-forward

by ~ ofthesymplecticmeasureon M, and let Ca be thecritical set

{m E M,q~(m)= a,dcbm= 0}.

Thenthejump in f( t) at ci isgivenby theformula:

/k \ k-i
I

11(t—a)
(5.2) f+ —f_ = volume (Ca) ~flci, ) (k—I)!

plusanerrortermof order 0( (t — a)k) the ci, ‘s beingtheweightsoftherepresentation
of S’ onthenormalbundleof Ca.

Proof Let p bethesymplecticvolumeon M. It is clearthat the Fouriertransformof
f is the integral

(5.3) fe13#d~.
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Thecontributionof Ma to thestationaryphaseexpansionof (5.3) is

(5.4) volume (Ca) s
me’8’~+Q(~_m_1)

Herewearejustusingthestandardstationaryphaseformulafor <<clean>>phasefunc-

tions. See,for instance,[HO], page222.) Therefore,by anelementaryTauberianar-
gument,the inverseFourier transformof (5.4) is equalto (5.3) plus an error term of
order

0((t —

Q.E.D. .

The formula, (5.1) is particularlyusefulif theactionof C/S’ on X is a <<Deizant>>

action,i.e. if thedimensionof X is assmall aspossible,namelytwice thedimension
of thegroup, C/S’. In this case,f~is equalto aconstant,(whichwewill denoteby

CW) and(5.1) becomesan exactformula:

IN—n ii r \N—fl
155\ .t — I hi C\’ I’~ C 0’I — J..- CW ~jj\ci~,ç/ ) (N — n)!

Thisformulaturnsout to veryusefulfor computingthe D — H polynomialsfor Lie

groupsof low rank. To illustratehow useful (5.5) canbe,we will give below a brief
sketchof how to computethe D — H polynomialsfor theten dimensionalcoadjoint
orbitsof SU(4). (TheD — H polynomialsfor theseorbits,unlikethosefor thesix and

eightdimensionalorbitsof SU(4) or thesix dimensionalorbitsof SU(3), don’t seem
to beeasyto computejust usingtheHeckmanformula alone.) Thecoadjointorbits of

SU(4) arejustthesetsof<<isospectral>>4 x 4 Hermitianmatrices.To bemorespecific,
let a~,i = 1,. . . , 4, be a quadrupleof real numbers,normalizedsothat a~~ a~~

a
3 ~ a4, and a1+...+a4 = 0; andlet °a bethesetofall4 x4Hermitian

matriceswhoseeigenvaluesarethe ai’s. Thenevery coadjointorbit of SU(4) is an

°a and visaversa. The genericcoadjointorbits are thosefor which all the a,’s are
distinct,andtheseorbits aretwelve dimensional.Theorbitswhich weare interestedin
atthemomentarethosefor whichtwo of the a,‘s are equal,and it turns out that these
areexactlytheten dimensionalones.Since the group, C, is thediagonalsubgroupof

SU(4), g~~ g the spaceof 4 x 4 diagonalmatricesof tracezero. Themoment
map, L) : — g, is just the mapwhich assignsto everymatrix belongingto O~its

diagonalentries.Theimage,E~,of themomentmapis a <<truncatedtetrahedron>>which
looks like
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It turnsout thatthenumberof A, ‘s is fifteen or forty-ninedependingon whetheror
not a2 = a3. Wewill considerthecase,a2 ~ a3, andto bespecific,we will assume
a1 = a2 = a; i.e. that thematricesbelongingto °a havetheeigenvaluesa,a3, and

a4. As wementionedabove,the walls of the a,’s arethe images,with respectto the
momentmap,of thefixed point setsof certaincircularsubgroupsof C. It turnsoutthat,

up to conjugation,thereareonly two subgroupsthat we haveto worry about.Thefirst is
thegroupgeneratedby thediagonalmatrix with +1 ‘s in its first two diagonalentriesand

— I ‘s in theremainingtwo entries,andthesecondthe groupgeneratedby thediagonal
matrix with +3 in its first diagonalentry and —1 ‘s in the remainingdiagonalentries.
Wewill denotethegeneratorof thefirst groupby A andthat of thesecondgroupby B.

Consider,now theactionof eachofthesetwo groupsof thecoadjointorbit, °a

PRoPosmoN5.3. Thefixedpointsetofthegroupgeneratedby A hasfourconnected

components,two CEP’ ‘s and two (F P’ x (~P
1 ‘s, and for the (F P1 x (F /~‘~sthe

action ofthe quotientgroup, C/S1, is a Deizant action. The fixed point set of the
groupgeneratedbyB hasthreecomponents,twoofwhicharc (F P2 ‘s; and theaction

ofC/S’ on theseCC P2 ‘5 is a Deizantaction.

Proof The fixed point set of thegroup generatedby A consistsof the matricesin the

set,°a’ whichcommutewith A; andthesearethematriceswhichhavethe two by two
block form

0
Lo T
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Thus thespectrumof S has to beeither {a},{ci3,a4},{cw,a3} or {a,a4}; and

thecorrespondingspectrumofT either {a3,cw4}, {a3}, {ci,a4} or {a,a3}. Itseasy
to seethat thesetof matricesfor which thespectrumof S is a or the spectrumof T
is {a} is a (C P’, and thesetof matricesfor which thespectrumof S is {a, a3} or

thespectrumof T is {a, a3} is a (F P’ x (C P
1. For B thesituationis similar: The

matricesbelongingtotheset Oa whichcommutewith B haveto havethe form:

Is 0
LOT

where a = a,a
3, or a4, and T is a 3 x 3 Hermitianmatrix with spectrum

{a,a3,a3}, {a,a4} or {a,a3}. In the lattertwo casesthe set of all suchmatrices
isa (CP

2. Q.E.D.

Noticefrom the figure abovethat A has four exteriorwalls which arehexagonalin
shape.Fromproposition5.3 it iseasyto deducethatthesearetheonly walls of the A,’s
which arenotDelzant. In other words

PROPOSITION5.4. For the tendimensionalorbitsofSU(4), thejumpsin the D — H
pol~iomialsacross;vallsoftheA, ‘s arealloftheform(5.5),exceptfor thejumpsacross

thefourexteriorhexagonalwalls.

In particular,ateveryinteriorwall, the changein f is a quadraticmonomialwhose
level setsareplanesparallelto the wall.
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