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Abstract. The Kostant multiplicity formula is a recipe for computing the weight mul-
tiplicities of an irreducible representatation of a compact semi-simple Lie group. We
describe here a generalization of Kostant’s formula: Suppose v is a Hamiltonian ac-
tion of a compact Lie group on a compact symplectic manifold. For an appropriate
«quantization», 13, of T the weight multiplicaties of 72 are given by a formula
similar to Konstant's. There is also an asymptotic version of this formula which gives
a recipe for computing the Duistermaat Heckman polynomials associated with .

SECTION 1. INTRODUCTION

Let G beatorusand p afinite dimensional complex representation of G. One of the
basic questions that can be asked about p is its decomposition into irreducibles. Since
all irreducibles of G are one dimensional, and given by integral weights, «, on the Lie
algebra of G, the question is how to describe the multiplicity of any given weight «. If
G is the maximal torus of a compact semi-simple group X, and p, is the restriction to
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G of an irreducible representation of K with maximal weight ), then the answer to
this question is given by the celebrated Kostant multiplicity formula [ K] which says
that the multiplicity m(«, p,) is given by

(1.1) m(a, py) = 3 (=DPN(w()+ @) — (a+9)).

In this expression § is one half the sum of the positive roots and the sum ranges over
all w in the Weyl group. The function N is the Kostant partition function: N(v) is
the number of solutions in non-negative integers (n,,...,n,) of the equation

(1.2) vEmog+ . no

where the «; are the positive roots. Although (1.1) is an explicit formula, it is ex-
tremely difficult to evaluate, since all partition functions, including the Kostant partition
function, are notoriously diffucult to evaluate. Furthermore, there are some miraculous
cancellations which occur in the Kostant multiplicity formula. For example, it is known
that the set of all & for which m(«, p,) # 0 is the convex hull of the points {w A}
as w ranges over the Weyl group. In particular, m(¢, p,) = 0if o does not lie in
this convex hull, a fact that is not at all obvious from the right hand side of (1.1). The
Kostant multiplicity formula can be derived from the Weyl character formula, cf. [J].
A modem discussion of this whole circle of ideas from the algebraic point of view can
be found in the papers [B-G-G]. The Weyl character formula can be derived geomet-
rically from a combination of the Boti-Borel-Weil theorem and the Atiyah-Bott fixed
theorem, cf. [A-B]. In the more general setting of the Atiyah-Bott theorem we are given
a holomorphic action of G on a holomorphic line bundle L over a compact Kaehler
manifold M with isolated fixed points. If a ¢ in the Lie algebra of G is such that
exp(&) is regular at all the fixed points, then the Atiyah-Bott theorem expresses the
Lefschetz number of exp(&) in terms of a sum over the fixed points, p, of an expres-
sion involving exp(¢) and p. The regularity condition means the following : Let p be
a fixed point of G. Then there is a linear action of G on the tangent space T, and this
action will have centain weights, «,;. None of these can be the zero weight, for a zero
weight would imply a (real) two dimensional subspace of 7}, consisting of points left
fixed by all of G and hence (by the exponential map relative to the Kaehler metric or
any G invariant Riemann metric) a two dimensional manifold of fixed points passing
through p, contradicting the assumption of isolated fixed points. Then the regularity
condition is

exp i (o) €) 7 1
or

(1.3) (o), £)¢2nZ for all pand j.
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Condition (1.3) clearly involves avoiding a countable number of hyperplanes. Let @ :
M — g* be the moment map associated to the action of G on M, where g* is the
dual space of the Lie algebra, g, of . Then the Atiyah-Bott formula asserts that the
Lefshetz number

” Lo = 3 S ULD,0
) P kl:[l(l —exp i{ay,, §))

Notice that condition (1.3) guarantees that the denominators of the summands in (1.4)
do not vanish. A fixed point ¢ is called a verfex if there exists a £ € g such that

(1.5) (a4, €) >0 forall ;.

The convexity theorem [A} and [G-S1] (see also [G-S3]) asserts that the image of the
moment map is the convex hull of the set {®(p)} as p ranges over all the vertices.
(The remaining fixed points if any will be called the interior fixed points. It is a property
of actions coming from coadjoint orbits when G is the maximal torus that there are no
interior fixed points.) Suppose we fix a vertex, ¢, and then choose a £ so that (1.5)
and (1.3) hold. This choice of £ will amount to the analogue, in the general case, of
the choice of a positive Weyl chamber implicit in the Kostant multiplicity formula. In
particular, at every other fixed point p we have

(1.6) (5, £} 7 0.
Let
a7 6, = SiEN((; 0, £)),  of, =€, 5o,

so that now for all p and ; we have

(1.8) (o, €) > 0.

We will now write down a generalization of Kostant’s multiplicity formula. We will
derive it from the Atiyah- Bott formula in section 4. Define N,, the «partition function
at p» by taking Np( v) to be the number of solutions in integers of the equation

(1.9) v=nal, + ...+ naf .
My d%d,p

Let

(1.10) (-7 =]]e,
J
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1
(1.11) 6, = 52%»
and
w 1 w
(1.12) 6, = > Ea”,.

Let #(a, L) denote the Leftschetz number of «, that is the altemating sum of the
multiplicity of o in the cohomology of the Doulbeault complex associated to L. Then
our generalization of the Kostant multiplicity formula is

1.13) La, L) = Y (1PN, (a+ 8¢ — (D(p) +5,)).
2

(Notice that the quantities Np( v), (1.7), (1.10) and (1.12) and hence formula (1.13)
all depend on the choice of g. Notice also that the sum in (1.13) extends over all fixed
points, not just vertices.) As we have indicated, the evaluation of the partition function is
a difficult business, and hence it is useful to have an «asymptotic» approximation to the
multiplicity formulas (1.1) and (1.13). Let us explain what we mean by «asymptotic» in
the context of the Kostant multiplicity formula (1.1). We can think of the multiplicity as a
measure u()), on g*, where the measure p()) isthe sumover o of m(w, p,) times
the delta function at «. So u(2), is a discrete measure supported at «lattice points» in
the convex hull of {w\}. Suppose we replace A by kX where k is some large integer.
As is well known, the representation p,, is the highest weight component of the repre-
sentation on the k — th tensor power, V® where V is the underlying vector space
of the representation p,. Its multiplicity measure, p(kX) will be a discrete measure
supported on the convex hull of {kwX}. Let A, : g — g" denote multiplication by
the scalar ¢, so that

A(1/xy [convex hull of {kwX}] = convex hull of {wA}.

So the push forward measure, A, Jk° u(kX), is a discrete measure supported on the
«(1/k) lattice points» in the convex hull of {wA}. It is known [G-82] that .

lim A (kX) =

(1.14) k‘_‘};‘o (1/k)-BCEA) = vg,

where

(1.15) vg = @, (Liouville meas. on M), @ : M — g* the moment map,

and where M isthe coadjoint orbitof K passing through X. So v isour «asymptotic
approximation» for the Kostant multiplicity measure. Now the Duistermaat-Heckman
theorem [D-H] says that for any Hamiltonian G action, vg is absolutely continu-
ous with respect to Lebesgue measure on ¢* and its Radon-Nikodym derivative is a
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piecewise polynomial function. More precisely, it says the following: Let A = @ (M)
be the convex polytope which is the image of the moment map. Then A is a union of
subpolytopes

(1.16) A=A U...AU...
such that the interiors of the A, consist of the regular values of ® and
1.17) ug = f; x (Lebesgue measure) on A,

where the f; are polynomials, which we shall call the Duistermaat-Heckman polyno-
mials (or D — H polynomials for short). So the problem of the asymptotics of the
Kostant multiplicity formula (and its generalization) consists of evaluating the D — H
polynomials. One such scheme is due to Heckman [H] for the case of coadjoint orbits
and motivates much of this paper: In the Kostant multiplicity formula (1.1) replace the
Kostant multiplicity function N by (a suitable constant times) the volume of the poly-
tope

(1.18) U=:E1a1+...+zdad, .'r120,...:l:d 20

To understand why such an expression should be relevant to the push forward of Li-
ouville measure under the momem map, let us consider the situation near a vertex, p.
By the equivariant Darboux theorem (see for example [G-S3]) the action of G near D
(or near any fixed point for that matter) is equivalent to the linear action of G near the
origin in the tangent space, T,,. For linear actions, the moment map is essentially given
by a projection (we shall review this fact in section 2) and the D — H polynomial can
be evaluated by elementary geometry to have the form of a constant times the volume
of a polytope such as (1.18). Indeed, let Ri denote the «positive d -tant » in R? con-
sisting of points with all coordinates positive, and let ds be the measure on R? which
is Lebesgue measure on R? and vanishes outside RS. Let

Lp : Ri — g'
be the map defined by
(1.19) L,(sy,-..,88) = P(p) + S1Q,F ...t S0y

Then if p is a vertex,

(1.20) vy = Ly ds near ®O(p),
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and the right hand side of (1.20) is easily seen to have the form of a polynomial times
Lebesgue measure, where the polynomial is given by a constant times the volume of a
region such as (1.18). This will be explained in more detail in sections 2 and 3. Now sup-
pose that we fix some vertex, ¢, and some £ € g satisfying (1.5). Let us «renormalize»
the maps L,, at all other fixed points by defining

(1.21) Ly (sy,84) = @(p) + syof, + ...+ syay,
and set
(1.22) v, = L¥ds.

Then our generalization of Heckman’s formula, to be proved in section 3 is
(1.23) Vo = D _(~1D)7y,.
4

Notice that once again some marvelous cancellations occur in (1.23) For example, vy,
vanishes outside A and has the much simpler form (1.20) on any region, A;, abutting
the image, ®(p), of a vertex. So instead of using the closed formula (1.23), a more
effective way of computing the D — H polynomial in many cases is algorithmic: start
with the known form of f; in some subpolytope A; and see how f; changes when we
cross a wall and move from A; to an adjoining subpolytope. We shall provide formulas
for the jumps across walls in section 5.

SECTION 2 COMPUTING THE D — H POLYNOMIALS: THE LINEAR CASE

In this section we show how to compute the D — H polynomials f; on regions,
A,, adjacent to the exterior vertices of A. For such regions the action of G can be
assumed to be a linear action, by the equivariant Darboux theorem, cf [G-S3]; so we
will start by investigating in detail the linear case. For simplicity let G be the standard
n-dimensional torus, i.e.

G= Rn/zn

Let V be a symplectic vector space, and p a representation of G on V. One can
decompose V into a sum of invariant subspaces corresponding to the weights that occur
in p:

Q.1 V=) V% aeZm
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We will assume that zero is not a weight of p, and hence that each V© is a two-
dimensional symplectic subspace of V (i.c. a one-dimensional complex subspace. Let
2y,...,2) be asystem of complex coordinates on V' compatible with the decomposi-
tion, (2.1). Then the moment map associated with p is the map.

2.2) D:V o (R, ®(z,...,2y) = |2, [P + ...+ |2y [P ay
and the image is the convex conic polytope

2.3 A ={sjo+...+syay,s,...,8y 20}

The following is immediate:

LEMMA 2.1. The following are equivalent: ® is proper <+ A is properly contained in
a half-space, i.e. there exists a £ € R” such that (o, &) >0 forall i. n

Lets assume from now on that this is the case. Then the push-forward of the syrn-
plectic measure on V' with respect to @, i.e. the measure

1 N
@.4) u=v¢=¢*(<ﬁ> dzl/\dél/\.../\dzN/\dEN),

is well-defined. We will show that one can compute it by elementary methods. In fact
we will give below three equivalent descriptions of it, each one being useful for certain
purposes. To begin with suppose N = 1. Set & = «;. Then A is the single ray,
{te,t > 0}. Let 1, be the map of the half-line, 0 < t < oo, into (R™)* sending ¢
to to.

LEMMA 22. vy, Is the push-forward with respect to ¢, of the Lebesgue measure, dt.
Proof. We want to show

d _
@.5) P LIAL LY

The LHS of (2.5), evaluated on a smooth, compactly supported function, f, is

d
/(p f(z, z/\dz /f(l 2a) dz/\dz

The second expression can be written in polar coordinates, z = re', as

2/°°f(r2a)rdr= /m f(ta)dt
0 0
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and the expression on the right is the RHS of (2.5) evaluated on f. Q.E.D. u

Now consider the general case. By (2.1) the representation, p, is the product of the
representations of G on the one dimensional subspaces, V*, so the measure, vg, is
the convolution of the measure associated with these one dimensional representations:

(2.6) vg = (k) A% ... % (5, ),dt

As we’ll see below, it is not difficult to compute the RHS of (2.6) by induction on
N.

Another useful formula for the measure, vy, is the following: Consider @ as the
composition of the mapping:

¥V oRY (2),..,20) = (5. 2x]D)
and the linear mapping

L:RY 5 (RM*, (8),-..,8y) = 810, + ...+ syay

LEMMA 2.3. Let be the characteristic functionofthe « N -tant» {s; > 0,...,s, >0},
inRY . Then

1\N
@ \y*<—.> dzAdZ=xds A...Adsy

i
Proof. This is just formula (2.6) with N = n and «;,..., @y thestandard basis vectors
in R¥. QED. n

Thus we obtain for v, the formula
(2.8) vp = L,(xds; A...Adsy)
From the RHS of this formula one immediately deduces:

PROPOSITION 24. If the «;’s span (R™)*, then vg, is absolutely continuous with
respect to Lebesgue measure, 1.¢e. it can be written in the form

2.9) vp = f(z)dzx

f(x) being alocally L' function.
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Proof. If the «,’s span, one can make a linear change of coordinates in RY sothat L
becomes the mapping: z; = s;, + = 1,...,n and in these coordinates the proposition
is just a consequence of Fubini’s theorem. Q.E.D. =

The value of f atanypointin (R")* is pfoportional to the volume of the intersection
of L™1(a) withthe N-tant: ie. f(«) isequal to a constant (not depending on « )
times the volume of the set

(2.10) a=Eslal+...+sNaN, 31,...,8”20,

Notice that if o and the «;’s are large, and « is an integer lattice point, this volume
is, to a first approximation, proportional to the number of integer lattice points lying in
this set, i.e. f( Q) ~ yN(a), where N is the partition function associated with the

weights, o,...,ay.
The third description of vg, is as the fundamental solution of a partial differential
equation. Suppose a; = (a;,...,0;,). Let

D, =4,0/8z) + ...+ 0,,0/0z,,

and let &, be the Dirac delta function with support at the origin in (R")*. We will
show that

ot

@11 - D, ...D, ve = &.

Proof. Suppose first that N = 1 and «; = «. Evaluating the RHS on a smooth,
compactly supported function, f, we get

(Davqnf) = _(U(I))Daf) =
= —((¢y),d¢,D,f)

= / Eaiﬁ (art,...,a,t)dt
0 1 69;,-

> d
=/0 = Hayt,.a,0dt = £(0),

which is just §; evaluatedon f. To prove (2.11) in general we go back to the formula
(2.6). This gives us for the right hand side of (2.11) the expression

(Da,("a,)xdt) * ..k (DQN(LaN),dt).
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As we’ve just seen, each factor in this convolution product is the delta function sup-
ported at the origin; hence so is the product itself. Q.E.D. ]

By assumptioﬁ the cone (2.2) is properly contained in some half-space
(Hp)" = {z € (RM)", ({,7) >0}

Hence the measure, ug,, is properly supported in this half-space. We claim that
this property and the equation, (2.11), completely characterize vy . Indeed, suppose we
were given two distributions both of which satisfied (2.11) and were supported in this
half-space. Then their difference, v, would satisfy

and would also be supported in this half-space. Let

V=D ...D

ap Gy v

Then D,, v' = 0, arid so the support condition clearly implies that v' = 0. Sim-
ilarly D, ... Dqu = 0 forall 4, and, in particular, v itself has to be equal to zero.
Notice, by the way, that if we differentiate vg, by just one of the D, ;’s, says D_,, we
get, by the same argument as above,

(2.12) Dalv¢=(‘a;)*dt*"'*(La~)'dt'

We will make use of this identity below.
Next let us investigate some properties of the measure vg,. For every subset, S, of
the set of weights, {a,,...,ay}, let

(Vp)¥=J[(ve-0

aEeS

It is easy to see that at every point, p, of (VO)S , the subgroup of G which stabilizes
p is independent of p and is the group

(2.13) {z € R*/Z" exp2mi(a,z) = 1,a € S}.

Since a point of V' is a critical point of @ iff its stabilizer group is not discrete, we
conclude;

LEMMA 2.5. The set of critical points of @ is a disjoint union of (V) S5, moreover,
a (Vp) S js critical iffthe o’s in S are not a set of spanning vectors of (R™)*. ]
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Let W5 be the following subset of (R")*;
wS = {Esaa,a €8S,s,>0}.
From the lemma and the definition of @, we get:

PROPOSITION 2.6. The critical values of ® are the union of the W5 ’s for which S is
not a spanning set of (R™)*.

Let A, be the complement in A of the set of critical values of @, and let A,,i =
1,...,r, be the connected components of A. By proposition 2.6, the A;’s are open
conic polytopes, and the sets, WS are the walls of these polytopes. Now lets write
vg as the product of Lebesgue measure with a locally £! summable function, f, as
in (2.9). Since each A, is contained in the set of regular values of @, the restriction
of f to A; is a smooth function. Notice also that, by (2.8), the measure, vg,, is the
push-forward by a linear map of a measure on R¥ which is homogeneous of degree N
with respect the group of homotheties of RY. Thus vy is also homogeneous of degree
N, and so, by (2.8), f is homogeneous of degree N — n, i.c.

f(tz) = """ f().
We will now prove the Duistermaat-Heckman theorem in this linear setting:

THEOREM 2.7. The restriction of f to each A; is a homogeneous polynomial of degree
N —mn

Proof. Choose coordinates in (R"V)* so that the A is properly contained in the half-
space, z; > 0, and o is the unit vector pointing in the direction of the positive
axis. By (2.12)
(2.14) 0/0z1vg = (45,),dE % ... x (4, ),d2.

Assume by induction that the RHS is a sum of the form

Zg‘-(zl,...,mﬂ)x{

where the g,’s are polynomials and the x,’s are the characteristic functions of the A;’s.
Let p be apointin Ay andlet z,,...,z, be its coordinates. By integrating (2.14), we
get

(2.15) f(z,,...,x")=z-/;lxigi(s, Ty,...,3,)ds
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Since p isin Ay, the ray, p+ to;, —0o < t < O, intersects the n— 1 dimensional
walls of the A;’s transversally and doesn’t intersect any of the lower dimensional walls.
Thus, since each A; is convex, one of the three following altematives has to be true: 1.
The ray doesn’t intersect the boundary of A; at all.

2. It intersects the boundary of A, in just one point, (in which case p is an interior
point of A,.)

3. It intersects the boundary of A; in two points.

Moreover, in the last two cases, the points of intersection depend linearly on p : i.e.
in the second case, the point of intersection,

p=(z,2,,...,1,)

satisfies a linear equation

T'=ayz;+ ...+ 0a,T

nvny
and in the third case the points of intersection,
p=(z,2,,...,1,)
and
pu= (:z",zz,...,x")
satisfy linear equations
T =03 +...+0,T,
and
"= bz + ..+ bz,

In the first case, the ith term makes no contribution at all to the sum (2.15). In the
second case, it makes the contribution

)
/ fi(s, zy,...,3,)ds

and, in the third case, the contribution

zlll
/ fi(s, z9,...,2,)ds
x

s

It is clear in either case that this expression is a polynomial function of the z.’s.
Q.E.D. [
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REMARK. This proof can be converted into a fairly efficient algorithm for computing
I

Next we will derive a formula for the «jumps» in f across walls separating two
adjacent A;’s. (We will take pains, by the way, to write this formula as «intrinsically» as
possible, because, as we will see in section 5, the version of this formula that we will give
below is true in the manifold setting as well.) Let W = WS be an n— 1 dimensional
wall separating the regions, A, and A_, and let G5 be the subgroup of G defined by
the set of equations (2.13). Since the «’s belonging to S spanan n— 1 dimensional
subspace of (R™)*, this group in one dimensional. Let £ be a non-zero element in its
Lie algebra. Its clear that (o, &) = 0 forall o € S, and that these equations determine
¢ up to a constant multiple. Conversely we can assume that S consists exactly of those
weights for which (a,£) = 0. We will fix the orientation of ¢ by requiring that it be
the outward normal to the region, A_. With the convention, £ is determined up to a
positive constant multiple.

Let V¥ be the subspace of V spanned by the V®’s in the sum (2.1) with o € S.
By (2.13), V5 is the fixed point set of the group, G¥ : 50, by restricting p to VS, we
get a representation of the quotient group, G/G®, on V¥. Its moment map is just the
restriction of ® to V¥, and maps V¥ onto the n— 1 dimensional wall, WS. We
will denote by vg the analogue of the measure, v, for the action of G/GS on V¥
and think of this measure as living on W¥. We will show below that this measure is all
the data that is needed to compute the jump in f across WS.

Justas for v, wecanwrite vg as the product of alocally £! function, fg, (defined
on W¥), times the Lebesgue measure on W95, A slight hitch is that the Lebésgue
measure on W5 is only defined up to multiplication by a positive constant. However, the
choice of £ gives us a way of fixing this constant. Let (§;,...,£,) be the coordinates
of £, andlet vg bean n— 1 formon (R")* of the form

n
vg=y o ~D'dz, A AdZ AL Adz

=1

n

the a,’s being constants which satisfy

(2.16) S ag=1.

Then the restriction of vg to WS doesn’t depend on the choices of the a;’s and
defines both an orientation and a measure on W9, This measure, which we will continue
to denote by v, will be by definition, our Lebesgue measure on WS, In terms of it we
can write

(2.17) US = fsys.
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Notice, by the way, that fg is itself, (by theorem 2.7 applied to the action of G/G*S
on V%), apiecewise polynomial function. Also notice that if we multiply ¢ by a pos-
itive number, ), then by (2.16) vg gets multiplied by a factor of 1/ and hence fg
gets multiplied by a factor of M.

Before stating our main result we need two final pieces of notation. Via the identifi-
cation, R™ 2 (R")**, we can think of £ as a linear functional on (R")*. It will cause
untold confusion below if we use the same notation for £ and for this linear functional,
so we will denote this linear functional by L. A second bit of notation that we will
need is the following. In the decomposition, (2.1), we can assume that the «,’s are so
labelled that the first m o;’s arenotin S and the remaining «;’s are.

THEOREM 2.8. Suppose f isequal to the polynomial, f,, on A, and f on A_. Then

1 = _ m—
(2.18) fo—f.= (m [I(@:. 1) fsLi ' +g
i=1
g being a polynomial which vanishes to order m on W¥.

Proof. (By induction on m. ) Assume by induction that along W¥ the distribution
(Laz),dt ...k (LaN),dt

has a singularity of the form

1 m
(m g(“nf)—l> fs L§

By (2.12) this distribution is the derivative of f with respectto D, . However,

2 {7 -1
L? - m—1 D“t L?
so f itself has to have a singularity of the form, (2.18), along wS. QED. - u

REMARK. Notice that the number of weights in S is atleast n— 1; so m isless thanor
equalto N —n+ 1. The formula, (2.18), is particularly simple when the this inequality
is an equality, i.e. when m = N — n+ 1. Then, since f, and f_ are homogeneous
polynomials of degree N —m, g hastobe zero and fg hasio be a constant. This constant

is easy to compute: Let
Y1 z(al,l)"':al,n)
(2.19)

oy =0 110, 1)
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and let Ae be the matrix having the vectors (2.19) as its first n— 1 rowsand (q,,...,
a,) asits last row. (the a;’s being as in (2.17).) Then

(2.20) fs=cg=det (47"

and (2.18) reduces to

N-n+l
= _CS__ . -1 N-n
@18) fo~f= ((N_n), 11 (2,€) )(Le)

i.e. the jump across W is a constant multiple of the monomial, (L)V—".

EXAMPLE. N =4 n=2,qa,, o, a3, o, distinct. One gets the figure below for A :

o3

@2

oy

In all three regions of this figure the D-H polynomials are homogeneous quadratic
polynomials. In the exterior regions these polynomials are monomials whose level sets
are straight lines parallel to the exterior sides. If one goes into the interior region from
the side parallel to «,, the jump term which one has to add is a monomial whose level
sets are straight lines parallel to «,. If one goes into the interior region from the side
parallel to «;, the jump term which one has to add is a monomial whose level sets are
straight lines parallel to a;. (Exercise: Determine the coefficients of these jump terms
using the fact that one has to get the same answer, whether one goes into the region from
the left or the right.) One important consequence of (2.18) is the following:

THEOREM 29. f is continuous near W¥ if m > 1, and is k times differentialble
near WS if m > k+ 1. .
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SECTION 3. COMPUTING THE D — H POLYNOMIALS: THE <HECKMAN»
FORMULA

Lets now come back to the situation we were considering in section 1: G an n-torus,
M acompact symplectic manifold and

K : G — Symplectico (M)
a Hamiltonian action of G on M. As in section one, we will denote by
d:M—-g

the moment map associated with x and by v, the push-forward with respectto ® of
the canonical symplectic measure on M. Let f be the Duistermaat-Heckman function,
i.e. the Radon-Nikodym derivative of v, withrespect to Lebesgue measure on g*. The
goal of this section will be to derive a formula for f similar to the Kostant-Heckman
formula which we discussed in the first paragraph of section 1. Unfortunately, this for-
mula will only make sense when the fixed point set of is a finite set; so we will henceforth
assume that this is the case. Before stating this formula in its full generality, we will first
describe what a «piece» of this formula looks like. As we pointed out in section one,
the support, A, of v, i$ the convex hull of the image of the fixed point set, M, of
(7, so, inparticular, A is a finite polytope, and its vertices are images of points in M.
However, there may be points in M, which don’t correspond to vertices of A : itis
possible for the image of some fixed point to be contained in the interior of the convex
hull of the remaining fixed points. In fact, as mentioned in the introduction, a necessary
and sufficient condition for a fixed point, p, to correspond to a vertex of A is the fol-
lowing: Let 7, be the linear isotropy representation of G' on the tangent space to M

at p. By the equivariant Darboux theorem there exists a G invariant neighbourhood,
‘ Uy, of the originin T'M,,, and a symplectomorphism:

G.1) h: (U,p) — (Up,0)

intertwining ~ and 7,. (For a proof of this «(G-equivariant Darboux theorem» see
[G-S3].) Now let

(3.2) o ., i=1,...,N,

PV .
be the weights of the representation of G' on T'M,, andlet z;,...,zy beasystem of
complex coordinates in T'M,, compatible with the decomposition of T'M,, into weight
spaces. By (3.1) the moment map, @, restricted to U, isequal to ©, c h + ®(p),
where

(3.3) q)o(zly"-yzN) = Zap,ilzi|2'

(Compare with (2.2).) Thus the image of U in g¢* is the intersection of a neighbor-
hood of @ (p) with the cone:
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(3.4 {P(p)+ ) 80,0, 8 20,...,8y 20}

and so, ®(p) will be a vertex of A, at least locally, iff (3.4) is a proper cone, i.e. iff
there exists a £ € g such that

(3.5) (ep1,€) >0

for all 5. One can, in fact, prove a good deal more. Using some global properties of
the moment mapping, one can show that if ®(U) is contained in the cone (3.4), then
®( M) is contained in this cone; so if (3.5) holds, ®(p) is an honest-to-god vertex of
A, not just a vertex locally, (See [A] or [GS, ].)

Lets now assume that a { satisfying (3.5) exists. Then, by lemma 22, ® : U — g~
is proper; so the measure, vy, is identical in a neighborhood of ®(p) to the measure
which we studied in the previous section. In particular:

THEOREM 3.1. In a neighborhood of @ (p), the Duistermaat-Heckman function, f(u),
is equal to a fixed constant times f,(u+ ®(p)) where

(3.6) £,(p) = volume {u =" s;a,;, 5, 20,5, > 0.}

Notice, by the way, that since f is a polynomial on each of the subregions, A,, of
A, one can take the neighborhood on which f(u) is proportional to fp(u + @(p))
to be a lot larger than @ (U) : one can take it to be the union of all the A;’s whose
closures contain @ (p). For example, Let M be a six dimensional coadjoint orbit of
SU(3) and G the maximal torus of SU(3). The image of the moment map is then a
hexagon, and in general, this hexagon will be subdivided into seven regions as depicted
below:
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(There will be a one parameter family of six dimensional orbits (corresponding to
multiples of the adjoint representation) where the hexagon will be a regular hexagon
and the middle region will have degenerated to a point, leaving six subregions instead
of seven.) In the generic case each vertex will give rise to two subregions, a triangular
and a rhomboidal subregion on which f is proportional to (3.6).

The moral of the discussion above is that one can completely describe the measure,
Uy, inthe vicinity of the vertices of A using nothing more than the relatively elementary
results of the previous section and the G-equivariant Darboux theorem. However, to get
information about vy, inregions, A,, not containing vertices in their closures, we will
nced one of the deeper results of the Duistermaat-Heckman theory: the exact stationary
phase formula. We will give a careful description of this formula below ; but before we
do so, lets first recall what the lemma of stationary phase in its usual form is about: Let
M be acompact n dimensional manifold, z a smooth, non-vanishing measure on M,
and ¢ : M — R, a smooth function having only a finite number of critical points, all
of them non-degenerate. Then the lemma of stationary phase is a recipe for evaluating
the oscillatory integral

/eikﬂzd‘u

in terms of data at the critical points. More explicitly, it says that for ) large, this integral
is equal to

3.7 AT N e et ) exp i (p)

modulo an error term of order, O(A~™"2-1) the sum taken over the fixed points. The
c,’s and sgn(p)’s in this sum are defined as follows: The Hessian of ¥ at p is a
non-degenerate quadratic form on the tangent space to M at p; so one can choose a
basis, vy,...,v,, for the tangent space such that with respect to this basis

Dzw(v,-,vj) = 5,‘5.']',

where ¢, = +1. The number of +1’s is sgn(p), (the signature of D24), and <y
is the quantity, p(v,,...,v,). In particular, let M be the symplectic manifold that
we’ve been considering, p the canonical symplectic measure, and ¢ a component of
the moment mapping;: i.e. let £ be anelement of g, andlet ¢ = ¢f = (P ,€). ltiseasy
to sec that ¢¢ has nondegenerate critical points if and only if the conditions (1.6) are
satisfied for all fixed points, p, of G, and, if these conditions are satisfied, the critical
points of $¢ coincide with these fixed points, in fact, by (3.3) the Hessian of ¢ at pis

(3.8) D, (Ol
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and its clear that this quadratic form is non-degenerate if and only if the conditions, (3.5),
are satisfied. From (3.3) one computes for the contribution of p to (3.7)

Cpe(ﬂ/z)i agn(p) _ (,‘)”(H a,;(£)) -

where N = dim M/2. Thus the modulo an error term stationary phase formula for ¢¢
reduces to

(3.9) / P ®Odp = (—iN) M Y exp i(®(p), /([ [(arpi(6))

for all £ which satisfy (1.6). The exact stationary phase formula of Duistermaat-Heck-
man says that the error term is identically zero. In other words, setting A = 1, the
identity

(3.10) JESRITRICED SETCION.Y) ) CHES

holds on the nose. For the proof we refer to [D-H] or [B-V] or [G-S3]. For the moment
we will just say a few words about how one can «almost» prove (3.10) just using the
G-equivariant form of the Darboux theorem. Namely, by the Darboux theorem, one can
write the integrand on the left hand side as

exp(iX ) 0, (&)]z,?) (1/m)¥ dzAdz,

in the neighborhood of the fixed point. Thus, by a partition of unity argument, one can
write (3.9) as a sum of the integrals "

(3.11) /cxp(iAZaP,i(f)lzilz) (1/m)V dzAdz,

(one such integral for each fixed point), and an integral of the form

f pexp(irgt)dp

where p isidentically zero in the neighborhood of the critical set. By elementary Fourier
analysis, the second expression is of order, O(A™°) in X for A large; and, by elemen-
tary calculations, onc can show that the sum of the terms, (3.11), is equal to the first term
on the right hand side in (3.9). Thus it takes no effort at all to improve the O(\~¥/2-1)
in (3.9) to an O(A~*°). The hard part of the proof of (3.10) is getting rid of this innocu-
ous looking O(A~%°.)

We will now describe the «Heckman» formula, (1.23), alluded to at the begiﬁning of
this section. Consider the subset of g consisting of the union of the hyperplanes

(ap,i, £) = 0
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The component of this set has several connected components, and we will fix, once
and for all, one of these components and call it our positive Weyl chamber. (Formula
(1.23) which we derive below will actually be a coliection of formulas, one for each
choice of a positive Weyl chamber.)

As described in the introduction, we define, for each fixed point, p, a renormalized
set of weights by equation (1.7) and define the v, by (1.21) and (1.22), and the function
(—1P by (1.10).

From the previous section we known that v, is a constant multiple of f,dz, f, being
the «Heckman partition function»

f(p+ @(p)) = volume {u = " sa%;,5 >0,...,sy >0}

THEOREM. The Duistermaat-Heckman measure, vy, Is cqual to the altemating sum
over the fixed point set of G :

v = Y (~DPu,.

Proof. For the moment fix a point, p, in the fixed point set, and set

o =ay;,1=1,...,N
and
v=®(p).
Consider the function
(=
(3.12) g ,ﬁ,(“"f)

Let O be the open subset of g obtained by deleting the hyperplanes, («;,§) = 0. Then
g is a well-defined rational function on O, and there are many ways to extend it to a
«generalized» function on all of g. L]

PROPOSITION 3.3. Let € be a vector in the positive Weyl chamber. Then there is one
and just one tempered distribution, h, on g with the properties that h isequalto g on
O and that the Fourier transform of h is properly supported in the half-space,

(3.13) {x €9, {a,) >c}

for some constant, c.
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Proof, Without loss of generality we can assume that v = 0, (in which case we can
take the constant, ¢, to be zero). The existence of one such distribution is easy. Let v
be the measure defined by (2.4). We showed that this measure satisfies the differential
equation

Dul "'DGNU—__ 60;

so the Fourier transform of this measure satisfies

(TTte0) o=1,

whichreducesto (3.12) on O. As for the uniqueness, suppose there are two distributions
with the properties above. Let k be their difference. Then & is supported on the union
of the hyperplanes, («;,&) = 0. Moreover, since it is tempered, it lies in some fixed
Sobolev space, and hence (regarded as a linear functional on the Schwartz space) is
continuous in the Cj topology for a sufficiently large r. Therefore, its product by a
sufficiently large power of [J{w;,£) has to vanish, and its Fourier transform has to
satisfy the differential equation,

(3.14) (D, ...DQN)'f =0,
for r large. However, since f is supported on a half-space of the form

(3.15) {ueg” (u,é) >c},

with { in the positive Weyl chamber, this implies that f is identically zero. (See the
discussion in section 2 following the proof of (2.11).) Q.E.D. ’ =

To prove (1.23) notice that, by construction, the Fourier transform on the LHS of
(1.23) is equal to the Fourier transform of the RHS on O. However, by the Fourier
inversion formula, the Fourier transform of these Fourier transform are both supported
in a half-space of the form, (3.15). Hence a repetition of the previous argument shows
that they have to be identical. Q.E.D.

SECTION 4. IS THERE A «<KOSTANT» FORMULA CORRESPONDING TO
THE <HECKMAN» FORMULA?

We will show in this section that the answer to this question is yes and is given by
(1.13). We will have to assume, however, that the symplectic action of G on M, i.e.

& : G — Symplectico (M)
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can be «quantized». There is no firm consensus about what this termn means; however,
for the duration of section 4, we will take it to mean that the following are true.

a. & canbe pre-quantized: Suppose that the cohomology class defined by the sym-
plectic form on M belongs to the image of the canonical mapping , ¢ : H>(M,Z) —
H*(M,R), ie. that it is an infegral cohomology class. Then, by [K], there exists a
Hermitian line bundle, L, sitting over M and a connection, V, on L whose curva-
ture form is w,,. Moreover, if M is simply connected, L and V are unique up to
isomorphism. Furthermore, (loc. cit.), one gets a canonical representation of g on the
space of sections of L : Foreach ¢ € g, let £¥ be the vector field on M associated
with &, and let

@1 D, = Vey + i(®@,6).

Then the map, { — D, is a Lie algebra homomorphism. Following [K] we say that
£ can be pre-quantized if there is a representation of G on sections of L, which is given
infinitesmally by (4.1).

b. M possesses a positive definite G-invariant polarization, i.e. there existsa G
invariant Kaehler structure on M compatible with its symplectic structure. In this case
L aquires naturally the structure of a holomorphic line bundle, and the holomorphic
structure on L is compatible with the action of G defined by (4.1).

" Given a. and b. we will, again following [K], define the quantization of s to be
the natural representation, p, of G on the space of holomorphic sections of L. Our
starting point for the «generalized Kostant formula» (1.13) below will be a formula for
the «character» of p (actually an altemating‘ trace, i.e. a Leftschetz number) which is
very similar to the exact stationary phase formula described in the previous section. As
in the previous section, we will assume that the fixed point set, M, is finite and that for
each p € M, the weights of the isotropy representation of GG on the tangent space to
M at p are given by (3.2). Let ¢ be an clement of g satisfying (3.5), and consider the
Lefschetz number L(p(exp £)). By the Atiyah-Bott fixed point formula, [A-B}, this is
equal to the sum over Mg of

tre (exp ) : L, — L,
2 [1C1 —expifay,, §)

x, being the isotropy representation of G on the fiber, L,. By (4.1) the trace of
r(exp §) is equal to exp (P (p),&); so we get formula (1.4).

Before exploiting this formula, we will pause for a moment to point out some sim-
ilarities between it and (3.10). In both formulas, the sum is over the fixed point set of
G and the numerator of the p — th summand in the same. Moreover, for ¢ small, the
denominator of the p — th summand in (1.4) is approximately equal to

“.2) (=N [ @pu(®
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which is identical with the denominator of the p — th summand in (3.10). Thus we’ve
proved

PROPOSITION 4.1. For £ small, the trace of p(exp if) is approximately equal to
0 (8).

This result explains, incidentally, why the asymptotic properties of the multiplicity
diagrams can be described by a «central limit theorem» involving the measure, vg,; for,
by rescaling, « £ small» in proposition 4.1 can be reinterpreted as «the ap;'s large».

Lets now consider the Fourier transforms of the right and left hand sides of (1.4). Let
a be alattice point in g* and let &(«, L) be the Lefschetz number of « in p. Then
the LHS of (1.4) is the sum

D e(p, L) exp i(p, )

and its Fourier transform is a finite sum of delta functions:
@.3) D&, L8 — ).

On the other hand to compute the Fourier transform of the RHS of (1.4), we have
to know how to compute the Fourier transforms of each of the individual terms on the
RHS. The situation here is similar to the situation we encountered in the previous section
in trying to compute the RHS of (3.10): there is some ambiguity about the definition of
this Fourier transform since the p — th summand in (4.2) is defined only if

(app, £) ¢ 20Z

forall k¥ and p. As described in section 1, we will deal with this ambiguity by renor-
malizingthe a,;’s, i.e. we will fix for once and for all a «positive Weyl chamber» and
so choose a £ satisfying (1.3) and (1.5) for some ¢, and make the definition (1.7)-(1.12)
at each fixed point p. After some juggling we can write the p — th term in the sum of
the right of (1.4) as

1y SRHED 8 8,0

k]:_[l (1 —exp1 (a:k,£>>

Now lets replace each factor in the denominator of this expression by the correspond-
ing geometric series

“4.4)

@.5) D expim(a¥,i,€)
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and get for (4.4) the formula

4.6) (—DPY " Ny(w) expilp + @(p)) + 6 — 6,8
where Np( ) is the number of N-tuples of non-negative integers, (k,,...,ky), sat-
isfying the equation

b= E kia;l,r

We will can N, the partition function associated with the point, p. Consider now
the Fourier transform of (4.6). This is the sum

@7 (=D Y N (W8 —p—D(p) — 67 + 6,)
Notice that both (4.7) and (4.3) have support in a fixed half-space
He={eg", ()6 >c},

¢ lying in the positive Weyl chamber and ¢ being a fixed constant. (For (4.7) this is a
consequence of the fact that N,, is supported in the cone,

{Esia;’,,-, 5,>0,...,sy 20},

and for (4.3) it is merely a consequence of the fact that (4.3) is compactly supported.) We
will show, as in section 3, that this forces (4.3) to be equal on the nose to the sum over
p € M of the expression, (4.7). Indeed, take the Fourier transform of (4.3) and of the
sum of the (4.7)’s, and let k be their difference. Then, by construction, & is supported
on the union of the hyperplanes, {a,;,£) € 27Z, and hence

11 —expla,enTk=0

for sufficiently large r. Therefore, the inverse Fourier transform of k satisfies the dif-
ference equation

(4.8) [I( -7 f=0,

J,, being the operator, «translation by « .» This, together with the fact f is supported
in H, forces f 10 be zero, and hence proves that (4.3) and the sum of the (4.7) ’s are
equal. (Proof: Argue by induction on the number of factors in the product on the right
in the equation (4.8). For instance if r is equal to one and there is just one ayp,, this
equation says that f(u) = f(u + ). Since f is supported in H, and («,&) # O,
this forces f to be zero.) Lets now compare both sides of this equation. Setiing v =

p+@(p) —DP(p) + 6, + 5, wecan rewrile “.7:

(=DP Y N, (v~ @(p) + 8 ~8)6() — v).

Thus, summing over p and comparing the coefficients of (X — v), we get the
«Kostant» formula (1.13).
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SECTION 5. COMPUTING THE D — H POLYNOMIALS: FORMULAS FOR
THE JUMPS

In the exact stationary phase formula which we described in section 3.3 we had to
assume that the fixed point set of G, i.e. Mg, was a finite set. Duistermaat and Heck-
man derived in [DH, 2] a more general version of exact stationary phase which makes
no assumptions at all about the fixed point set of G. Unfortunately it is not very useful
for the computations we are trying to do here, since it involves knowing quite a bit about
the topology of the nommal bundle of M. However, the «leading term» in their formula
can be computed by a standard stationary phase argument and is very useful for com-
puting the «jumps» inthe D — H polynomials across the walls of the A,’s. It tumns out
that these jumps are given by essentially the same formulas as in the linear case. Here
are the details:

Let A, and A_ be two adjacent A;’s, let f, and f bethe D — H polynomials
associated with them, and let W be the (n — 1)-dimensional wall separating them,
oriented so that the «<nomal vector», £,to W is pointingout of A_ andinto A,. We
will show that the jump, f, — f_, at W is given by the formula

" L¢— Lo)™!
(51) f+ - f— = (H(ai,£)_l) fW(—-é—__g)_—-

pir (m—-1D!

plus an error term of order (L, — Ly)™, the quantities, a;, fy, L, eic. being defined
more or less as in the linear case. (Compare with (2.18).) The precise definitions are
as follows: As we already mentioned, £ points into A, . (Since W sitsin g*, we can
think of § as an element of g or as an element of T"W.) We recall that L, denotes
the linear functional on g* associated with £, i.e. the linear functional

b= (B,

The one-parameter subgroup of G generated by £ is a circular subgroup, and we will
denote itby S'. To explain the other undefined quantities on the RHS of (5.1), we must
first say a few words about the action of § 1.on M. To begin with, its fixed point set,
Mg, is a symplectic submanifold of M, and & maps one (or more) of the connected
components of Mg onto W. (For simplicity, we will assume that just one component
is involved and denote this component by X.) The quotient group, G/S?, acts in a
Hamiltonian fashion on X, and the moment map of this action is the restriction of @
to X. The push-forward of the canonical symplectic measure on X by the moment map
is a measure which lives on W, and the f,, in (5.1) is the Radon-Nikodym derivative
of this measure with respect to the Lebesgue measure on W. (A small complication is:
«how to define Lebesgue measure on W .» In principle it is only defined up to the choice
of a positive constant; however, as we pointed out in section 2, the choice of £ fixes this
constant in a canonical way. See (2.16) and the discussion following it.)
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We still have to explain the «m» and the «g;’s» in (5.1): The integer, m, is as in
(2.18), the codimension of X divided by 2, and the «;’s are the weights of the isotropy
representation of S! onthe normal bundle of X. (Notice that, because X is connected,
this representation has the same weights at every point.)

Proofof(5.1). Let H bean (n—1)-dimensional toral subgroup of G with the property
that H and S! intersectin {e}, and let @ g be the moment mapping associated with
the actionof H on X. @ is the composition of ® with the canonical projection:

m; g" — h”,

and the restriction of n to W maps W bijectively onto h*. Let « be a point on W
whose image, 7(«), is a regular value of @,. Associated 10 o are two symplectic
manifolds: One can reduce M (viewed as an H-space) at m(«), and one can reduce
X (viewed as a G/S!-space) at a. Let us denote these reduced spaces by M, and
X,,. Notice that since the action of S' commutes with the action of H, there is an
induced action of S' on M,,.

LEMMA 5.1. X, is the fixed point set for the action of S’ on M. .
We will leave the proof of this as an easy exercise. Notice that, by definition, the
value of fy,, at « is the symplectic volume of X _; so, by the lemma, we are reduced
to proving (3.1) in the special case, G = S'; that is, we are reduced to proving the
following: (the manifold, M, in the theorem that follows being the M above.)

THEOREM 5.2. Let M be a compact symplectic manifold. Suppose S! actson M ina
Hamiltonian fashion with moment map, ¢ : M — R. Let f(t)dt be the push-forward
by ¢ of the symplectic measure on M, and let C,, be the critical set

{m € M,¢(m)=a,d¢, =0}
Then the jump in f(t) at « is given by the formula:
k k-1
a4y (t—a)
(52) f+ —_ f_ = volume (Ca) (g o l) W

plus anerrorterm of order O((t—a) k) the a;’s being the weights of the representation
of S! on the normal bundle of C,,.

Proof. Let pu be the symplectic volume on M. Itis clear that the Fourier transform of
f is the integral

(5.3) / e*dy.
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The contribution of M, to the stationary phase expansion of (5.3) is

(5.4) volume (C,) (H a,-_1> s™e% + O(s™™ )

1=1

Here we are just using the standard stationary phase formula for «clean» phase func-
tions. See, for instance, [HO], page 222.) Therefore, by an elementary Tauberian ar-
gument, the inverse Founer transform of (5.4) is equal to (5.3) plus an error term of
order

O((t —a)®y.
Q.E.D. »

The formula, (5.1) is particularly useful if the action of G/S' on X isa «Delzant»
action, i.e. if the dimension of X is as small as possible, namely twice the dimension
of the group, G/S”. In this case, fw isequal to a constant, (which we will denote by
cw) and (5.1) becomes an exact formula:

N-n _ (Lg_LO)N_"
(5.5) fo—f =cw (H<°‘-‘»f> ]> T(N=w!

i=1

This formula turns out to very useful for computing the D — H polynomials for Lie
groups of low rank. To illustrate how useful (5.5) can be, we will give below a brief
sketch of how to compute the D — H polynomials for the ten dimensional coadjoint
orbits of SU(4). (The D — H polynomials for these orbits, unlike those for the six and
eight dimensional orbits of SU(4) or the six dimensional orbits of SU(3), don’t seem
to be easy to compute just using the Heckman formula alone.) The coadjoint orbits of
SU(4) are just the sets of «isospectral» 4 x4 Hermitian matrices. To be more specific,
let a7 = 1,...,4, be a quadruple of real numbers, normalized so that «; > «, >
oy > a4, and a; + ...+ a, = 0; and let O, be the set of all 4 x 4 Hermitian
matrices whose eigenvalues are the «;’s. Then every coadjoint orbit of SU(4) is an
O, and visa versa. The generic coadjoint orbits are those for which all the «;’s are
distinct, and these orbits are twelve dimensional. The orbits which we are interested in
at the moment are those for which two of the «;’s are equal, and it turns out that these
are exactly the ten dimensional ones. Since the group, G, is the diagonal subgroup of
SU(4),9* = g = the space of 4 x 4 diagonal matrices of trace zero. The moment
map, © : O, — g, is just the map which assigns to every matrix belonging to O, its
diagonal entries. The image, A, of the moment map is a «truncated tetrahedron» which
looks like
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It turns out that the number of A,’s is fifteen or forty-nine depending on whether or
not o, = a3. We will consider the case, o, 7 a3, and to be specific, we will assume
oy = a, = a; i.e. that the matrices belonging to O, have the eigenvalues «, o, and
o, . As we mentioned above, the walls of the «,’s are the images, with respect to the
moment niap, of the fixed point sets of certain circular subgroups of G. It tumns out that,
up to conjugation, there are only two subgroups that we have to worry about. The first is
the group generated by the diagonal matrix with +1’s in its first two diagonal entries and
—1’s in the remaining two entries, and the second the group generated by the diagonal
matrix with +3 in its first diagonal entry and —1’s in the remaining diagonal entries.
We will denote the generator of the first group by A and that of the second group by B.
Consider, now the action of each of these two groups of the coadjoint orbit, O, :

PROPOSITION 5.3. The fixed point set of the group generated by A has four connected
components, two CP'’s and two CP' x CP'’s, and for the CP' x CP'’s the
action of the quotient group, G/S', is a Delzant action. The fixed point set of the
group generated by B has three components, two of which are € P?’s; and the action
of G/S' onthese € P?’s is a Delzant action.

Proof. The fixed point set of the group gencrated by A consists of the matrices in the
set, O, whichcommute with A; and these are the matrices which have the two by two

[5 2]

block form
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Thus the spectrum of S has to be either {a}, {e;,,},{e, a3} or {a,0,}; and
the corresponding spectrum of T either {a;,a,}, {a3}, {@,a,} or {o, a3 }. Itseasy
to see that the set of matrices for which the spectrum of S is « or the spectrum of T
is {a} isa € P!, and the set of matrices for which the spectrum of S is {a@, a3} or
the spectrum of T is {&,;} isa CP! x CP'. For B the situation is similar: The
matrices belonging to the set O, which commute with B have to have the form:

s 0
o T
where s = o,04, Or o, and T is a 3 x 3 Hemmitian matrix with spectrum

{a,a3,03}, {a,0,} or {a,a;}. In the latter two cases the set of all such matrices
isa CP?. QED. M

Notice from the figure above that A has four exterior walls which are hexagonal in
shape. From proposition 5.3 it is easy to deduce that these are the only walls of the A,’s
which are not Delzant. In other words

PROPOSITION 5.4. For the ten dimensional orbits of SU(4), the jumpsinthe D — H
polynomials across walls of the A;’s are all of the form (3.5), except for the jumps across
the four exterior hexagonal walls. =

In particular, at every interior wall, the change in f is a quadratic monomial whose
level sets are planes parallel to the wall.
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